MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfs2 Structured version   Visualization version   Unicode version

Theorem ovolfs2 23339
Description: Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
ovolfs2.1  |-  G  =  ( ( abs  o.  -  )  o.  F
)
Assertion
Ref Expression
ovolfs2  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  G  =  ( ( vol*  o.  (,) )  o.  F ) )

Proof of Theorem ovolfs2
Dummy variables  x  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolfcl 23235 . . . . 5  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
2 ovolioo 23336 . . . . 5  |-  ( ( ( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) )  ->  ( vol* `  ( ( 1st `  ( F `
 n ) ) (,) ( 2nd `  ( F `  n )
) ) )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
31, 2syl 17 . . . 4  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( vol* `  ( ( 1st `  ( F `
 n ) ) (,) ( 2nd `  ( F `  n )
) ) )  =  ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) ) )
4 inss2 3834 . . . . . . . . . 10  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
5 rexpssxrxp 10084 . . . . . . . . . 10  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
64, 5sstri 3612 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
7 ffvelrn 6357 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( F `  n )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
86, 7sseldi 3601 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( F `  n )  e.  ( RR*  X.  RR* )
)
9 1st2nd2 7205 . . . . . . . 8  |-  ( ( F `  n )  e.  ( RR*  X.  RR* )  ->  ( F `  n )  =  <. ( 1st `  ( F `
 n ) ) ,  ( 2nd `  ( F `  n )
) >. )
108, 9syl 17 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( F `  n )  =  <. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
1110fveq2d 6195 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( (,) `  ( F `  n ) )  =  ( (,) `  <. ( 1st `  ( F `
 n ) ) ,  ( 2nd `  ( F `  n )
) >. ) )
12 df-ov 6653 . . . . . 6  |-  ( ( 1st `  ( F `
 n ) ) (,) ( 2nd `  ( F `  n )
) )  =  ( (,) `  <. ( 1st `  ( F `  n ) ) ,  ( 2nd `  ( F `  n )
) >. )
1311, 12syl6eqr 2674 . . . . 5  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( (,) `  ( F `  n ) )  =  ( ( 1st `  ( F `  n )
) (,) ( 2nd `  ( F `  n
) ) ) )
1413fveq2d 6195 . . . 4  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( vol* `  ( (,) `  ( F `  n
) ) )  =  ( vol* `  ( ( 1st `  ( F `  n )
) (,) ( 2nd `  ( F `  n
) ) ) ) )
15 ovolfs2.1 . . . . 5  |-  G  =  ( ( abs  o.  -  )  o.  F
)
1615ovolfsval 23239 . . . 4  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( G `  n )  =  ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) ) )
173, 14, 163eqtr4rd 2667 . . 3  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( G `  n )  =  ( vol* `  ( (,) `  ( F `  n )
) ) )
1817mpteq2dva 4744 . 2  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
n  e.  NN  |->  ( G `  n ) )  =  ( n  e.  NN  |->  ( vol* `  ( (,) `  ( F `  n
) ) ) ) )
1915ovolfsf 23240 . . 3  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  G : NN --> ( 0 [,) +oo ) )
2019feqmptd 6249 . 2  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  G  =  ( n  e.  NN  |->  ( G `  n ) ) )
21 id 22 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2221feqmptd 6249 . . 3  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  =  ( n  e.  NN  |->  ( F `  n ) ) )
23 ioof 12271 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
2423a1i 11 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (,) : ( RR*  X.  RR* ) --> ~P RR )
2524ffvelrnda 6359 . . . 4  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  ( RR*  X.  RR* )
)  ->  ( (,) `  x )  e.  ~P RR )
2624feqmptd 6249 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (,)  =  ( x  e.  ( RR*  X.  RR* )  |->  ( (,) `  x
) ) )
27 ovolf 23250 . . . . . 6  |-  vol* : ~P RR --> ( 0 [,] +oo )
2827a1i 11 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  vol* : ~P RR --> ( 0 [,] +oo ) )
2928feqmptd 6249 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  vol*  =  ( y  e. 
~P RR  |->  ( vol* `  y )
) )
30 fveq2 6191 . . . 4  |-  ( y  =  ( (,) `  x
)  ->  ( vol* `  y )  =  ( vol* `  ( (,) `  x ) ) )
3125, 26, 29, 30fmptco 6396 . . 3  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( vol*  o.  (,) )  =  ( x  e.  ( RR*  X.  RR* )  |->  ( vol* `  ( (,) `  x ) ) ) )
32 fveq2 6191 . . . 4  |-  ( x  =  ( F `  n )  ->  ( (,) `  x )  =  ( (,) `  ( F `  n )
) )
3332fveq2d 6195 . . 3  |-  ( x  =  ( F `  n )  ->  ( vol* `  ( (,) `  x ) )  =  ( vol* `  ( (,) `  ( F `
 n ) ) ) )
348, 22, 31, 33fmptco 6396 . 2  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( vol*  o.  (,) )  o.  F
)  =  ( n  e.  NN  |->  ( vol* `  ( (,) `  ( F `  n
) ) ) ) )
3518, 20, 343eqtr4d 2666 1  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  G  =  ( ( vol*  o.  (,) )  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573   ~Pcpw 4158   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    <_ cle 10075    - cmin 10266   NNcn 11020   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   abscabs 13974   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  uniioombllem2  23351
  Copyright terms: Public domain W3C validator