| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for minvec 23207. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| minvec.x |
|
| minvec.m |
|
| minvec.n |
|
| minvec.u |
|
| minvec.y |
|
| minvec.w |
|
| minvec.a |
|
| minvec.j |
|
| minvec.r |
|
| minvec.s |
|
| minvec.d |
|
| minvec.f |
|
| Ref | Expression |
|---|---|
| minveclem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . . . . . 9
| |
| 2 | 2z 11409 |
. . . . . . . . 9
| |
| 3 | rpexpcl 12879 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | sylancl 694 |
. . . . . . . 8
|
| 5 | 4 | rphalfcld 11884 |
. . . . . . 7
|
| 6 | 4nn 11187 |
. . . . . . . 8
| |
| 7 | nnrp 11842 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
|
| 9 | rpdivcl 11856 |
. . . . . . 7
| |
| 10 | 5, 8, 9 | sylancl 694 |
. . . . . 6
|
| 11 | minvec.y |
. . . . . . . 8
| |
| 12 | 11 | adantr 481 |
. . . . . . 7
|
| 13 | rabexg 4812 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 17 |
. . . . . 6
|
| 15 | eqid 2622 |
. . . . . . 7
| |
| 16 | oveq2 6658 |
. . . . . . . . 9
| |
| 17 | 16 | breq2d 4665 |
. . . . . . . 8
|
| 18 | 17 | rabbidv 3189 |
. . . . . . 7
|
| 19 | 15, 18 | elrnmpt1s 5373 |
. . . . . 6
|
| 20 | 10, 14, 19 | syl2anc 693 |
. . . . 5
|
| 21 | minvec.f |
. . . . 5
| |
| 22 | 20, 21 | syl6eleqr 2712 |
. . . 4
|
| 23 | oveq2 6658 |
. . . . . . . . . 10
| |
| 24 | 23 | oveq1d 6665 |
. . . . . . . . 9
|
| 25 | 24 | breq1d 4663 |
. . . . . . . 8
|
| 26 | 25 | elrab 3363 |
. . . . . . 7
|
| 27 | oveq2 6658 |
. . . . . . . . . 10
| |
| 28 | 27 | oveq1d 6665 |
. . . . . . . . 9
|
| 29 | 28 | breq1d 4663 |
. . . . . . . 8
|
| 30 | 29 | elrab 3363 |
. . . . . . 7
|
| 31 | 26, 30 | anbi12i 733 |
. . . . . 6
|
| 32 | simprll 802 |
. . . . . . . 8
| |
| 33 | simprrl 804 |
. . . . . . . 8
| |
| 34 | 32, 33 | ovresd 6801 |
. . . . . . 7
|
| 35 | minvec.u |
. . . . . . . . . . . . 13
| |
| 36 | cphngp 22973 |
. . . . . . . . . . . . 13
| |
| 37 | ngpms 22404 |
. . . . . . . . . . . . 13
| |
| 38 | minvec.x |
. . . . . . . . . . . . . 14
| |
| 39 | minvec.d |
. . . . . . . . . . . . . 14
| |
| 40 | 38, 39 | msmet 22262 |
. . . . . . . . . . . . 13
|
| 41 | 35, 36, 37, 40 | 4syl 19 |
. . . . . . . . . . . 12
|
| 42 | 41 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 43 | eqid 2622 |
. . . . . . . . . . . . . . 15
| |
| 44 | 38, 43 | lssss 18937 |
. . . . . . . . . . . . . 14
|
| 45 | 11, 44 | syl 17 |
. . . . . . . . . . . . 13
|
| 46 | 45 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 47 | 46, 32 | sseldd 3604 |
. . . . . . . . . . 11
|
| 48 | 46, 33 | sseldd 3604 |
. . . . . . . . . . 11
|
| 49 | metcl 22137 |
. . . . . . . . . . 11
| |
| 50 | 42, 47, 48, 49 | syl3anc 1326 |
. . . . . . . . . 10
|
| 51 | 50 | resqcld 13035 |
. . . . . . . . 9
|
| 52 | 5 | adantr 481 |
. . . . . . . . . 10
|
| 53 | 52 | rpred 11872 |
. . . . . . . . 9
|
| 54 | 4 | adantr 481 |
. . . . . . . . . 10
|
| 55 | 54 | rpred 11872 |
. . . . . . . . 9
|
| 56 | minvec.m |
. . . . . . . . . . 11
| |
| 57 | minvec.n |
. . . . . . . . . . 11
| |
| 58 | 35 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 59 | 11 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 60 | minvec.w |
. . . . . . . . . . . 12
| |
| 61 | 60 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 62 | minvec.a |
. . . . . . . . . . . 12
| |
| 63 | 62 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 64 | minvec.j |
. . . . . . . . . . 11
| |
| 65 | minvec.r |
. . . . . . . . . . 11
| |
| 66 | minvec.s |
. . . . . . . . . . 11
| |
| 67 | 10 | adantr 481 |
. . . . . . . . . . . 12
|
| 68 | 67 | rpred 11872 |
. . . . . . . . . . 11
|
| 69 | 67 | rpge0d 11876 |
. . . . . . . . . . 11
|
| 70 | simprlr 803 |
. . . . . . . . . . 11
| |
| 71 | simprrr 805 |
. . . . . . . . . . 11
| |
| 72 | 38, 56, 57, 58, 59, 61, 63, 64, 65, 66, 39, 68, 69, 32, 33, 70, 71 | minveclem2 23197 |
. . . . . . . . . 10
|
| 73 | 52 | rpcnd 11874 |
. . . . . . . . . . 11
|
| 74 | 4cn 11098 |
. . . . . . . . . . . 12
| |
| 75 | 74 | a1i 11 |
. . . . . . . . . . 11
|
| 76 | 4ne0 11117 |
. . . . . . . . . . . 12
| |
| 77 | 76 | a1i 11 |
. . . . . . . . . . 11
|
| 78 | 73, 75, 77 | divcan2d 10803 |
. . . . . . . . . 10
|
| 79 | 72, 78 | breqtrd 4679 |
. . . . . . . . 9
|
| 80 | rphalflt 11860 |
. . . . . . . . . 10
| |
| 81 | 54, 80 | syl 17 |
. . . . . . . . 9
|
| 82 | 51, 53, 55, 79, 81 | lelttrd 10195 |
. . . . . . . 8
|
| 83 | rpre 11839 |
. . . . . . . . . 10
| |
| 84 | 83 | ad2antlr 763 |
. . . . . . . . 9
|
| 85 | metge0 22150 |
. . . . . . . . . 10
| |
| 86 | 42, 47, 48, 85 | syl3anc 1326 |
. . . . . . . . 9
|
| 87 | rpge0 11845 |
. . . . . . . . . 10
| |
| 88 | 87 | ad2antlr 763 |
. . . . . . . . 9
|
| 89 | 50, 84, 86, 88 | lt2sqd 13043 |
. . . . . . . 8
|
| 90 | 82, 89 | mpbird 247 |
. . . . . . 7
|
| 91 | 34, 90 | eqbrtrd 4675 |
. . . . . 6
|
| 92 | 31, 91 | sylan2b 492 |
. . . . 5
|
| 93 | 92 | ralrimivva 2971 |
. . . 4
|
| 94 | raleq 3138 |
. . . . . 6
| |
| 95 | 94 | raleqbi1dv 3146 |
. . . . 5
|
| 96 | 95 | rspcev 3309 |
. . . 4
|
| 97 | 22, 93, 96 | syl2anc 693 |
. . 3
|
| 98 | 97 | ralrimiva 2966 |
. 2
|
| 99 | 38, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39 | minveclem3a 23198 |
. . . 4
|
| 100 | cmetmet 23084 |
. . . 4
| |
| 101 | metxmet 22139 |
. . . 4
| |
| 102 | 99, 100, 101 | 3syl 18 |
. . 3
|
| 103 | 38, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39, 21 | minveclem3b 23199 |
. . 3
|
| 104 | fgcfil 23069 |
. . 3
| |
| 105 | 102, 103, 104 | syl2anc 693 |
. 2
|
| 106 | 98, 105 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-topgen 16104 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-ghm 17658 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-rnghom 18715 df-drng 18749 df-subrg 18778 df-staf 18845 df-srng 18846 df-lmod 18865 df-lss 18933 df-lmhm 19022 df-lvec 19103 df-sra 19172 df-rgmod 19173 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-phl 19971 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-fil 21650 df-xms 22125 df-ms 22126 df-nm 22387 df-ngp 22388 df-nlm 22391 df-clm 22863 df-cph 22968 df-cfil 23053 df-cmet 23055 df-cms 23132 |
| This theorem is referenced by: minveclem4a 23201 |
| Copyright terms: Public domain | W3C validator |