MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem6 Structured version   Visualization version   Unicode version

Theorem ftc1lem6 23804
Description: Lemma for ftc1 23805. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L^1 )
ftc1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
ftc1.f  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
ftc1.j  |-  J  =  ( Lt  RR )
ftc1.k  |-  K  =  ( Lt  D )
ftc1.l  |-  L  =  ( TopOpen ` fld )
ftc1.h  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
Assertion
Ref Expression
ftc1lem6  |-  ( ph  ->  ( F `  C
)  e.  ( H lim
CC  C ) )
Distinct variable groups:    x, t,
z, C    t, D, x, z    z, G    t, A, x, z    t, B, x, z    ph, t, x, z    t, F, x, z    x, L, z
Allowed substitution hints:    G( x, t)    H( x, z, t)    J( x, z, t)    K( x, z, t)    L( t)

Proof of Theorem ftc1lem6
Dummy variables  s  u  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . . 4  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
2 ftc1.a . . . 4  |-  ( ph  ->  A  e.  RR )
3 ftc1.b . . . 4  |-  ( ph  ->  B  e.  RR )
4 ftc1.le . . . 4  |-  ( ph  ->  A  <_  B )
5 ftc1.s . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  D )
6 ftc1.d . . . 4  |-  ( ph  ->  D  C_  RR )
7 ftc1.i . . . 4  |-  ( ph  ->  F  e.  L^1 )
8 ftc1.c . . . 4  |-  ( ph  ->  C  e.  ( A (,) B ) )
9 ftc1.f . . . 4  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
10 ftc1.j . . . 4  |-  J  =  ( Lt  RR )
11 ftc1.k . . . 4  |-  K  =  ( Lt  D )
12 ftc1.l . . . 4  |-  L  =  ( TopOpen ` fld )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ftc1lem3 23801 . . 3  |-  ( ph  ->  F : D --> CC )
145, 8sseldd 3604 . . 3  |-  ( ph  ->  C  e.  D )
1513, 14ffvelrnd 6360 . 2  |-  ( ph  ->  ( F `  C
)  e.  CC )
16 cnxmet 22576 . . . . . 6  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
17 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
186, 17syl6ss 3615 . . . . . . 7  |-  ( ph  ->  D  C_  CC )
1918adantr 481 . . . . . 6  |-  ( (
ph  /\  w  e.  RR+ )  ->  D  C_  CC )
20 xmetres2 22166 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  D  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( D  X.  D ) )  e.  ( *Met `  D ) )
2116, 19, 20sylancr 695 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( ( abs  o.  -  )  |`  ( D  X.  D
) )  e.  ( *Met `  D
) )
2216a1i 11 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( abs  o. 
-  )  e.  ( *Met `  CC ) )
23 eqid 2622 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( D  X.  D
) )  =  ( ( abs  o.  -  )  |`  ( D  X.  D ) )
2412cnfldtopn 22585 . . . . . . . . . . . 12  |-  L  =  ( MetOpen `  ( abs  o. 
-  ) )
25 eqid 2622 . . . . . . . . . . . 12  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) )
2623, 24, 25metrest 22329 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  D  C_  CC )  -> 
( Lt  D )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) ) )
2716, 18, 26sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( Lt  D )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) ) )
2811, 27syl5eq 2668 . . . . . . . . 9  |-  ( ph  ->  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) ) )
2928oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( K  CnP  L
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) )  CnP  L ) )
3029fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( K  CnP  L ) `  C )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) )  CnP  L ) `
 C ) )
319, 30eleqtrd 2703 . . . . . 6  |-  ( ph  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D
) ) )  CnP 
L ) `  C
) )
3231adantr 481 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  F  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) )  CnP  L ) `
 C ) )
33 simpr 477 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  w  e.  RR+ )
3425, 24metcnpi2 22350 . . . . 5  |-  ( ( ( ( ( abs 
o.  -  )  |`  ( D  X.  D ) )  e.  ( *Met `  D )  /\  ( abs  o.  -  )  e.  ( *Met `  CC ) )  /\  ( F  e.  ( (
( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D
) ) )  CnP 
L ) `  C
)  /\  w  e.  RR+ ) )  ->  E. v  e.  RR+  A. y  e.  D  ( ( y ( ( abs  o.  -  )  |`  ( D  X.  D ) ) C )  <  v  ->  ( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  <  w )
)
3521, 22, 32, 33, 34syl22anc 1327 . . . 4  |-  ( (
ph  /\  w  e.  RR+ )  ->  E. v  e.  RR+  A. y  e.  D  ( ( y ( ( abs  o.  -  )  |`  ( D  X.  D ) ) C )  <  v  ->  ( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  <  w )
)
36 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  y  e.  D )
3714ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  C  e.  D )
3836, 37ovresd 6801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( y ( ( abs  o.  -  )  |`  ( D  X.  D
) ) C )  =  ( y ( abs  o.  -  ) C ) )
3918adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  ->  D  C_  CC )
4039sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  y  e.  CC )
41 iccssre 12255 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
422, 3, 41syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A [,] B
)  C_  RR )
4342, 17syl6ss 3615 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  CC )
44 ioossicc 12259 . . . . . . . . . . . . . . 15  |-  ( A (,) B )  C_  ( A [,] B )
4544, 8sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  ( A [,] B ) )
4643, 45sseldd 3604 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  CC )
4746ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  C  e.  CC )
48 eqid 2622 . . . . . . . . . . . . 13  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4948cnmetdval 22574 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  C  e.  CC )  ->  ( y ( abs 
o.  -  ) C
)  =  ( abs `  ( y  -  C
) ) )
5040, 47, 49syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( y ( abs 
o.  -  ) C
)  =  ( abs `  ( y  -  C
) ) )
5138, 50eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( y ( ( abs  o.  -  )  |`  ( D  X.  D
) ) C )  =  ( abs `  (
y  -  C ) ) )
5251breq1d 4663 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( ( y ( ( abs  o.  -  )  |`  ( D  X.  D ) ) C )  <  v  <->  ( abs `  ( y  -  C
) )  <  v
) )
5313adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  ->  F : D --> CC )
5453ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( F `  y
)  e.  CC )
5515ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( F `  C
)  e.  CC )
5648cnmetdval 22574 . . . . . . . . . . 11  |-  ( ( ( F `  y
)  e.  CC  /\  ( F `  C )  e.  CC )  -> 
( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  =  ( abs `  ( ( F `  y )  -  ( F `  C )
) ) )
5754, 55, 56syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  =  ( abs `  ( ( F `  y )  -  ( F `  C )
) ) )
5857breq1d 4663 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( ( ( F `
 y ) ( abs  o.  -  )
( F `  C
) )  <  w  <->  ( abs `  ( ( F `  y )  -  ( F `  C ) ) )  <  w ) )
5952, 58imbi12d 334 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  y  e.  D )  ->  ( ( ( y ( ( abs  o.  -  )  |`  ( D  X.  D ) ) C )  <  v  ->  ( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  <  w )  <->  ( ( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) ) )
6059ralbidva 2985 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  ->  ( A. y  e.  D  ( ( y ( ( abs  o.  -  )  |`  ( D  X.  D ) ) C )  <  v  -> 
( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  <  w )  <->  A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) ) )
61 simprll 802 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  s  e.  ( ( A [,] B )  \  { C } ) )
62 eldifsni 4320 . . . . . . . . . . . . 13  |-  ( s  e.  ( ( A [,] B )  \  { C } )  -> 
s  =/=  C )
6361, 62syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  s  =/=  C )
642ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  A  e.  RR )
653ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  B  e.  RR )
664ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  A  <_  B )
675ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  ( A (,) B )  C_  D )
686ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  D  C_  RR )
697ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  F  e.  L^1 )
708ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  C  e.  ( A (,) B
) )
719ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  F  e.  ( ( K  CnP  L ) `  C ) )
72 ftc1.h . . . . . . . . . . . . 13  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
73 simplrl 800 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  w  e.  RR+ )
74 simplrr 801 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  v  e.  RR+ )
75 simprlr 803 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  A. y  e.  D  ( ( abs `  ( y  -  C ) )  < 
v  ->  ( abs `  ( ( F `  y )  -  ( F `  C )
) )  <  w
) )
76 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  u  ->  (
y  -  C )  =  ( u  -  C ) )
7776fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( y  =  u  ->  ( abs `  ( y  -  C ) )  =  ( abs `  (
u  -  C ) ) )
7877breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( y  =  u  ->  (
( abs `  (
y  -  C ) )  <  v  <->  ( abs `  ( u  -  C
) )  <  v
) )
79 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  u  ->  ( F `  y )  =  ( F `  u ) )
8079oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  u  ->  (
( F `  y
)  -  ( F `
 C ) )  =  ( ( F `
 u )  -  ( F `  C ) ) )
8180fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( y  =  u  ->  ( abs `  ( ( F `
 y )  -  ( F `  C ) ) )  =  ( abs `  ( ( F `  u )  -  ( F `  C ) ) ) )
8281breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( y  =  u  ->  (
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w  <->  ( abs `  ( ( F `  u )  -  ( F `  C )
) )  <  w
) )
8378, 82imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  (
( ( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w )  <-> 
( ( abs `  (
u  -  C ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 C ) ) )  <  w ) ) )
8483rspccva 3308 . . . . . . . . . . . . . 14  |-  ( ( A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w )  /\  u  e.  D
)  ->  ( ( abs `  ( u  -  C ) )  < 
v  ->  ( abs `  ( ( F `  u )  -  ( F `  C )
) )  <  w
) )
8575, 84sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  /\  u  e.  D )  ->  (
( abs `  (
u  -  C ) )  <  v  -> 
( abs `  (
( F `  u
)  -  ( F `
 C ) ) )  <  w ) )
8661eldifad 3586 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  s  e.  ( A [,] B
) )
87 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  ( abs `  ( s  -  C ) )  < 
v )
881, 64, 65, 66, 67, 68, 69, 70, 71, 10, 11, 12, 72, 73, 74, 85, 86, 87ftc1lem5 23803 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  /\  s  =/=  C )  ->  ( abs `  ( ( H `
 s )  -  ( F `  C ) ) )  <  w
)
8963, 88mpdan 702 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( ( s  e.  ( ( A [,] B )  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) )  /\  ( abs `  ( s  -  C
) )  <  v
) )  ->  ( abs `  ( ( H `
 s )  -  ( F `  C ) ) )  <  w
)
9089expr 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( s  e.  ( ( A [,] B
)  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) ) )  ->  (
( abs `  (
s  -  C ) )  <  v  -> 
( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) )
9190adantld 483 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  ( s  e.  ( ( A [,] B
)  \  { C } )  /\  A. y  e.  D  (
( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w ) ) )  ->  (
( s  =/=  C  /\  ( abs `  (
s  -  C ) )  <  v )  ->  ( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) )
9291expr 643 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  e.  RR+  /\  v  e.  RR+ ) )  /\  s  e.  ( ( A [,] B )  \  { C } ) )  ->  ( A. y  e.  D  ( ( abs `  ( y  -  C ) )  < 
v  ->  ( abs `  ( ( F `  y )  -  ( F `  C )
) )  <  w
)  ->  ( (
s  =/=  C  /\  ( abs `  ( s  -  C ) )  <  v )  -> 
( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) ) )
9392ralrimdva 2969 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  ->  ( A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  v  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  w )  ->  A. s  e.  ( ( A [,] B
)  \  { C } ) ( ( s  =/=  C  /\  ( abs `  ( s  -  C ) )  <  v )  -> 
( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) ) )
9460, 93sylbid 230 . . . . . 6  |-  ( (
ph  /\  ( w  e.  RR+  /\  v  e.  RR+ ) )  ->  ( A. y  e.  D  ( ( y ( ( abs  o.  -  )  |`  ( D  X.  D ) ) C )  <  v  -> 
( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  <  w )  ->  A. s  e.  ( ( A [,] B
)  \  { C } ) ( ( s  =/=  C  /\  ( abs `  ( s  -  C ) )  <  v )  -> 
( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) ) )
9594anassrs 680 . . . . 5  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  v  e.  RR+ )  ->  ( A. y  e.  D  ( ( y ( ( abs  o.  -  )  |`  ( D  X.  D ) ) C )  <  v  -> 
( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  <  w )  ->  A. s  e.  ( ( A [,] B
)  \  { C } ) ( ( s  =/=  C  /\  ( abs `  ( s  -  C ) )  <  v )  -> 
( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) ) )
9695reximdva 3017 . . . 4  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( E. v  e.  RR+  A. y  e.  D  ( (
y ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) C )  <  v  ->  ( ( F `  y ) ( abs 
o.  -  ) ( F `  C )
)  <  w )  ->  E. v  e.  RR+  A. s  e.  ( ( A [,] B ) 
\  { C }
) ( ( s  =/=  C  /\  ( abs `  ( s  -  C ) )  < 
v )  ->  ( abs `  ( ( H `
 s )  -  ( F `  C ) ) )  <  w
) ) )
9735, 96mpd 15 . . 3  |-  ( (
ph  /\  w  e.  RR+ )  ->  E. v  e.  RR+  A. s  e.  ( ( A [,] B )  \  { C } ) ( ( s  =/=  C  /\  ( abs `  ( s  -  C ) )  <  v )  -> 
( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) )
9897ralrimiva 2966 . 2  |-  ( ph  ->  A. w  e.  RR+  E. v  e.  RR+  A. s  e.  ( ( A [,] B )  \  { C } ) ( ( s  =/=  C  /\  ( abs `  ( s  -  C ) )  <  v )  -> 
( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) )
991, 2, 3, 4, 5, 6, 7, 13ftc1lem2 23799 . . . . 5  |-  ( ph  ->  G : ( A [,] B ) --> CC )
10099, 43, 45dvlem 23660 . . . 4  |-  ( (
ph  /\  z  e.  ( ( A [,] B )  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
101100, 72fmptd 6385 . . 3  |-  ( ph  ->  H : ( ( A [,] B ) 
\  { C }
) --> CC )
10243ssdifssd 3748 . . 3  |-  ( ph  ->  ( ( A [,] B )  \  { C } )  C_  CC )
103101, 102, 46ellimc3 23643 . 2  |-  ( ph  ->  ( ( F `  C )  e.  ( H lim CC  C )  <-> 
( ( F `  C )  e.  CC  /\ 
A. w  e.  RR+  E. v  e.  RR+  A. s  e.  ( ( A [,] B )  \  { C } ) ( ( s  =/=  C  /\  ( abs `  ( s  -  C ) )  <  v )  -> 
( abs `  (
( H `  s
)  -  ( F `
 C ) ) )  <  w ) ) ) )
10415, 98, 103mpbir2and 957 1  |-  ( ph  ->  ( F `  C
)  e.  ( H lim
CC  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   abscabs 13974   ↾t crest 16081   TopOpenctopn 16082   *Metcxmt 19731   MetOpencmopn 19736  ℂfldccnfld 19746    CnP ccnp 21029   L^1cibl 23386   S.citg 23387   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630
This theorem is referenced by:  ftc1  23805
  Copyright terms: Public domain W3C validator