MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyco2 Structured version   Visualization version   Unicode version

Theorem phtpyco2 22789
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
phtpyco2.f  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
phtpyco2.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
phtpyco2.p  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
phtpyco2.h  |-  ( ph  ->  H  e.  ( F ( PHtpy `  J ) G ) )
Assertion
Ref Expression
phtpyco2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( PHtpy `  K )
( P  o.  G
) ) )

Proof of Theorem phtpyco2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 phtpyco2.f . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 phtpyco2.p . . 3  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
3 cnco 21070 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  P  e.  ( J  Cn  K ) )  -> 
( P  o.  F
)  e.  ( II 
Cn  K ) )
41, 2, 3syl2anc 693 . 2  |-  ( ph  ->  ( P  o.  F
)  e.  ( II 
Cn  K ) )
5 phtpyco2.g . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
6 cnco 21070 . . 3  |-  ( ( G  e.  ( II 
Cn  J )  /\  P  e.  ( J  Cn  K ) )  -> 
( P  o.  G
)  e.  ( II 
Cn  K ) )
75, 2, 6syl2anc 693 . 2  |-  ( ph  ->  ( P  o.  G
)  e.  ( II 
Cn  K ) )
81, 5phtpyhtpy 22781 . . . 4  |-  ( ph  ->  ( F ( PHtpy `  J ) G ) 
C_  ( F ( II Htpy  J ) G ) )
9 phtpyco2.h . . . 4  |-  ( ph  ->  H  e.  ( F ( PHtpy `  J ) G ) )
108, 9sseldd 3604 . . 3  |-  ( ph  ->  H  e.  ( F ( II Htpy  J ) G ) )
111, 5, 2, 10htpyco2 22778 . 2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( II Htpy  K ) ( P  o.  G
) ) )
121, 5, 9phtpyi 22783 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 H s )  =  ( F `
 0 )  /\  ( 1 H s )  =  ( F `
 1 ) ) )
1312simpld 475 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( F ` 
0 ) )
1413fveq2d 6195 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( P `  ( 0 H s ) )  =  ( P `  ( F `  0 ) ) )
15 0elunit 12290 . . . . . 6  |-  0  e.  ( 0 [,] 1
)
16 simpr 477 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
17 opelxpi 5148 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
1815, 16, 17sylancr 695 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
19 iitopon 22682 . . . . . . . . 9  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
20 txtopon 21394 . . . . . . . . 9  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  II  e.  (TopOn `  ( 0 [,] 1 ) ) )  ->  ( II  tX  II )  e.  (TopOn `  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
2119, 19, 20mp2an 708 . . . . . . . 8  |-  ( II 
tX  II )  e.  (TopOn `  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
2221a1i 11 . . . . . . 7  |-  ( ph  ->  ( II  tX  II )  e.  (TopOn `  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) ) )
23 cntop2 21045 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
241, 23syl 17 . . . . . . . 8  |-  ( ph  ->  J  e.  Top )
25 eqid 2622 . . . . . . . . 9  |-  U. J  =  U. J
2625toptopon 20722 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2724, 26sylib 208 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
281, 5phtpycn 22782 . . . . . . . 8  |-  ( ph  ->  ( F ( PHtpy `  J ) G ) 
C_  ( ( II 
tX  II )  Cn  J ) )
2928, 9sseldd 3604 . . . . . . 7  |-  ( ph  ->  H  e.  ( ( II  tX  II )  Cn  J ) )
30 cnf2 21053 . . . . . . 7  |-  ( ( ( II  tX  II )  e.  (TopOn `  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  /\  J  e.  (TopOn `  U. J )  /\  H  e.  ( ( II  tX  II )  Cn  J ) )  ->  H : ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) --> U. J )
3122, 27, 29, 30syl3anc 1326 . . . . . 6  |-  ( ph  ->  H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J )
32 fvco3 6275 . . . . . 6  |-  ( ( H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J  /\  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 0 ,  s
>. )  =  ( P `  ( H `  <. 0 ,  s
>. ) ) )
3331, 32sylan 488 . . . . 5  |-  ( (
ph  /\  <. 0 ,  s >.  e.  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 0 ,  s
>. )  =  ( P `  ( H `  <. 0 ,  s
>. ) ) )
3418, 33syldan 487 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  H
) `  <. 0 ,  s >. )  =  ( P `  ( H `
 <. 0 ,  s
>. ) ) )
35 df-ov 6653 . . . 4  |-  ( 0 ( P  o.  H
) s )  =  ( ( P  o.  H ) `  <. 0 ,  s >. )
36 df-ov 6653 . . . . 5  |-  ( 0 H s )  =  ( H `  <. 0 ,  s >. )
3736fveq2i 6194 . . . 4  |-  ( P `
 ( 0 H s ) )  =  ( P `  ( H `  <. 0 ,  s >. ) )
3834, 35, 373eqtr4g 2681 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( P  o.  H ) s )  =  ( P `  ( 0 H s ) ) )
39 iiuni 22684 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
4039, 25cnf 21050 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
411, 40syl 17 . . . . 5  |-  ( ph  ->  F : ( 0 [,] 1 ) --> U. J )
4241adantr 481 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  F : ( 0 [,] 1 ) --> U. J
)
43 fvco3 6275 . . . 4  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  0  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  0 )  =  ( P `  ( F `  0 ) ) )
4442, 15, 43sylancl 694 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  0 )  =  ( P `  ( F `  0 ) ) )
4514, 38, 443eqtr4d 2666 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( P  o.  H ) s )  =  ( ( P  o.  F ) ` 
0 ) )
4612simprd 479 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( F ` 
1 ) )
4746fveq2d 6195 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( P `  ( 1 H s ) )  =  ( P `  ( F `  1 ) ) )
48 1elunit 12291 . . . . . 6  |-  1  e.  ( 0 [,] 1
)
49 opelxpi 5148 . . . . . 6  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
5048, 16, 49sylancr 695 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
51 fvco3 6275 . . . . . 6  |-  ( ( H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J  /\  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 1 ,  s
>. )  =  ( P `  ( H `  <. 1 ,  s
>. ) ) )
5231, 51sylan 488 . . . . 5  |-  ( (
ph  /\  <. 1 ,  s >.  e.  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 1 ,  s
>. )  =  ( P `  ( H `  <. 1 ,  s
>. ) ) )
5350, 52syldan 487 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  H
) `  <. 1 ,  s >. )  =  ( P `  ( H `
 <. 1 ,  s
>. ) ) )
54 df-ov 6653 . . . 4  |-  ( 1 ( P  o.  H
) s )  =  ( ( P  o.  H ) `  <. 1 ,  s >. )
55 df-ov 6653 . . . . 5  |-  ( 1 H s )  =  ( H `  <. 1 ,  s >. )
5655fveq2i 6194 . . . 4  |-  ( P `
 ( 1 H s ) )  =  ( P `  ( H `  <. 1 ,  s >. ) )
5753, 54, 563eqtr4g 2681 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( P  o.  H ) s )  =  ( P `  ( 1 H s ) ) )
58 fvco3 6275 . . . 4  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  1 )  =  ( P `  ( F `  1 ) ) )
5942, 48, 58sylancl 694 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  1 )  =  ( P `  ( F `  1 ) ) )
6047, 57, 593eqtr4d 2666 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( P  o.  H ) s )  =  ( ( P  o.  F ) ` 
1 ) )
614, 7, 11, 45, 60isphtpyd 22785 1  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( PHtpy `  K )
( P  o.  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   U.cuni 4436    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   [,]cicc 12178   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   IIcii 22678   Htpy chtpy 22766   PHtpycphtpy 22767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-tx 21365  df-ii 22680  df-htpy 22769  df-phtpy 22770
This theorem is referenced by:  phtpcco2  22799
  Copyright terms: Public domain W3C validator