MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpycc Structured version   Visualization version   Unicode version

Theorem phtpycc 22790
Description: Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
phtpycc.1  |-  M  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x K ( 2  x.  y ) ) ,  ( x L ( ( 2  x.  y
)  -  1 ) ) ) )
phtpycc.3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
phtpycc.4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
phtpycc.5  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
phtpycc.6  |-  ( ph  ->  K  e.  ( F ( PHtpy `  J ) G ) )
phtpycc.7  |-  ( ph  ->  L  e.  ( G ( PHtpy `  J ) H ) )
Assertion
Ref Expression
phtpycc  |-  ( ph  ->  M  e.  ( F ( PHtpy `  J ) H ) )
Distinct variable groups:    x, y, J    x, K, y    ph, x, y    x, L, y
Allowed substitution hints:    F( x, y)    G( x, y)    H( x, y)    M( x, y)

Proof of Theorem phtpycc
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 phtpycc.3 . 2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 phtpycc.5 . 2  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
3 phtpycc.1 . . 3  |-  M  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x K ( 2  x.  y ) ) ,  ( x L ( ( 2  x.  y
)  -  1 ) ) ) )
4 iitopon 22682 . . . 4  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
54a1i 11 . . 3  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
6 phtpycc.4 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
71, 6phtpyhtpy 22781 . . . 4  |-  ( ph  ->  ( F ( PHtpy `  J ) G ) 
C_  ( F ( II Htpy  J ) G ) )
8 phtpycc.6 . . . 4  |-  ( ph  ->  K  e.  ( F ( PHtpy `  J ) G ) )
97, 8sseldd 3604 . . 3  |-  ( ph  ->  K  e.  ( F ( II Htpy  J ) G ) )
106, 2phtpyhtpy 22781 . . . 4  |-  ( ph  ->  ( G ( PHtpy `  J ) H ) 
C_  ( G ( II Htpy  J ) H ) )
11 phtpycc.7 . . . 4  |-  ( ph  ->  L  e.  ( G ( PHtpy `  J ) H ) )
1210, 11sseldd 3604 . . 3  |-  ( ph  ->  L  e.  ( G ( II Htpy  J ) H ) )
133, 5, 1, 6, 2, 9, 12htpycc 22779 . 2  |-  ( ph  ->  M  e.  ( F ( II Htpy  J ) H ) )
14 0elunit 12290 . . . 4  |-  0  e.  ( 0 [,] 1
)
15 simpr 477 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
16 simpr 477 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  y  =  s )
1716breq1d 4663 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  ( y  <_ 
( 1  /  2
)  <->  s  <_  (
1  /  2 ) ) )
18 simpl 473 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  x  =  0 )
1916oveq2d 6666 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( 2  x.  y )  =  ( 2  x.  s ) )
2018, 19oveq12d 6668 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  ( x K ( 2  x.  y
) )  =  ( 0 K ( 2  x.  s ) ) )
2119oveq1d 6665 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( 2  x.  y )  - 
1 )  =  ( ( 2  x.  s
)  -  1 ) )
2218, 21oveq12d 6668 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  ( x L ( ( 2  x.  y )  -  1 ) )  =  ( 0 L ( ( 2  x.  s )  -  1 ) ) )
2317, 20, 22ifbieq12d 4113 . . . . 5  |-  ( ( x  =  0  /\  y  =  s )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x K ( 2  x.  y ) ) ,  ( x L ( ( 2  x.  y )  -  1 ) ) )  =  if ( s  <_ 
( 1  /  2
) ,  ( 0 K ( 2  x.  s ) ) ,  ( 0 L ( ( 2  x.  s
)  -  1 ) ) ) )
24 ovex 6678 . . . . . 6  |-  ( 0 K ( 2  x.  s ) )  e. 
_V
25 ovex 6678 . . . . . 6  |-  ( 0 L ( ( 2  x.  s )  - 
1 ) )  e. 
_V
2624, 25ifex 4156 . . . . 5  |-  if ( s  <_  ( 1  /  2 ) ,  ( 0 K ( 2  x.  s ) ) ,  ( 0 L ( ( 2  x.  s )  - 
1 ) ) )  e.  _V
2723, 3, 26ovmpt2a 6791 . . . 4  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 M s )  =  if ( s  <_  (
1  /  2 ) ,  ( 0 K ( 2  x.  s
) ) ,  ( 0 L ( ( 2  x.  s )  -  1 ) ) ) )
2814, 15, 27sylancr 695 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 M s )  =  if ( s  <_  ( 1  / 
2 ) ,  ( 0 K ( 2  x.  s ) ) ,  ( 0 L ( ( 2  x.  s )  -  1 ) ) ) )
29 simpll 790 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  ph )
30 elii1 22734 . . . . . . . 8  |-  ( s  e.  ( 0 [,] ( 1  /  2
) )  <->  ( s  e.  ( 0 [,] 1
)  /\  s  <_  ( 1  /  2 ) ) )
31 iihalf1 22730 . . . . . . . 8  |-  ( s  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  s )  e.  ( 0 [,] 1 ) )
3230, 31sylbir 225 . . . . . . 7  |-  ( ( s  e.  ( 0 [,] 1 )  /\  s  <_  ( 1  / 
2 ) )  -> 
( 2  x.  s
)  e.  ( 0 [,] 1 ) )
3332adantll 750 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
2  x.  s )  e.  ( 0 [,] 1 ) )
341, 6, 8phtpyi 22783 . . . . . 6  |-  ( (
ph  /\  ( 2  x.  s )  e.  ( 0 [,] 1
) )  ->  (
( 0 K ( 2  x.  s ) )  =  ( F `
 0 )  /\  ( 1 K ( 2  x.  s ) )  =  ( F `
 1 ) ) )
3529, 33, 34syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
( 0 K ( 2  x.  s ) )  =  ( F `
 0 )  /\  ( 1 K ( 2  x.  s ) )  =  ( F `
 1 ) ) )
3635simpld 475 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
0 K ( 2  x.  s ) )  =  ( F ` 
0 ) )
37 simpll 790 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  ph )
38 elii2 22735 . . . . . . . . 9  |-  ( ( s  e.  ( 0 [,] 1 )  /\  -.  s  <_  ( 1  /  2 ) )  ->  s  e.  ( ( 1  /  2
) [,] 1 ) )
39 iihalf2 22732 . . . . . . . . 9  |-  ( s  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  s
)  -  1 )  e.  ( 0 [,] 1 ) )
4038, 39syl 17 . . . . . . . 8  |-  ( ( s  e.  ( 0 [,] 1 )  /\  -.  s  <_  ( 1  /  2 ) )  ->  ( ( 2  x.  s )  - 
1 )  e.  ( 0 [,] 1 ) )
4140adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( 2  x.  s )  -  1 )  e.  ( 0 [,] 1 ) )
426, 2, 11phtpyi 22783 . . . . . . 7  |-  ( (
ph  /\  ( (
2  x.  s )  -  1 )  e.  ( 0 [,] 1
) )  ->  (
( 0 L ( ( 2  x.  s
)  -  1 ) )  =  ( G `
 0 )  /\  ( 1 L ( ( 2  x.  s
)  -  1 ) )  =  ( G `
 1 ) ) )
4337, 41, 42syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( 0 L ( ( 2  x.  s )  -  1 ) )  =  ( G `  0 )  /\  ( 1 L ( ( 2  x.  s )  -  1 ) )  =  ( G `  1 ) ) )
4443simpld 475 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( 0 L ( ( 2  x.  s
)  -  1 ) )  =  ( G `
 0 ) )
451, 6, 8phtpy01 22784 . . . . . . 7  |-  ( ph  ->  ( ( F ` 
0 )  =  ( G `  0 )  /\  ( F ` 
1 )  =  ( G `  1 ) ) )
4645ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( F ` 
0 )  =  ( G `  0 )  /\  ( F ` 
1 )  =  ( G `  1 ) ) )
4746simpld 475 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( F `  0
)  =  ( G `
 0 ) )
4844, 47eqtr4d 2659 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( 0 L ( ( 2  x.  s
)  -  1 ) )  =  ( F `
 0 ) )
4936, 48ifeqda 4121 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( 0 K ( 2  x.  s
) ) ,  ( 0 L ( ( 2  x.  s )  -  1 ) ) )  =  ( F `
 0 ) )
5028, 49eqtrd 2656 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 M s )  =  ( F ` 
0 ) )
51 1elunit 12291 . . . 4  |-  1  e.  ( 0 [,] 1
)
52 simpr 477 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  y  =  s )
5352breq1d 4663 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  ( y  <_ 
( 1  /  2
)  <->  s  <_  (
1  /  2 ) ) )
54 simpl 473 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  x  =  1 )
5552oveq2d 6666 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( 2  x.  y )  =  ( 2  x.  s ) )
5654, 55oveq12d 6668 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  ( x K ( 2  x.  y
) )  =  ( 1 K ( 2  x.  s ) ) )
5755oveq1d 6665 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( 2  x.  y )  - 
1 )  =  ( ( 2  x.  s
)  -  1 ) )
5854, 57oveq12d 6668 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  ( x L ( ( 2  x.  y )  -  1 ) )  =  ( 1 L ( ( 2  x.  s )  -  1 ) ) )
5953, 56, 58ifbieq12d 4113 . . . . 5  |-  ( ( x  =  1  /\  y  =  s )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x K ( 2  x.  y ) ) ,  ( x L ( ( 2  x.  y )  -  1 ) ) )  =  if ( s  <_ 
( 1  /  2
) ,  ( 1 K ( 2  x.  s ) ) ,  ( 1 L ( ( 2  x.  s
)  -  1 ) ) ) )
60 ovex 6678 . . . . . 6  |-  ( 1 K ( 2  x.  s ) )  e. 
_V
61 ovex 6678 . . . . . 6  |-  ( 1 L ( ( 2  x.  s )  - 
1 ) )  e. 
_V
6260, 61ifex 4156 . . . . 5  |-  if ( s  <_  ( 1  /  2 ) ,  ( 1 K ( 2  x.  s ) ) ,  ( 1 L ( ( 2  x.  s )  - 
1 ) ) )  e.  _V
6359, 3, 62ovmpt2a 6791 . . . 4  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 M s )  =  if ( s  <_  (
1  /  2 ) ,  ( 1 K ( 2  x.  s
) ) ,  ( 1 L ( ( 2  x.  s )  -  1 ) ) ) )
6451, 15, 63sylancr 695 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 M s )  =  if ( s  <_  ( 1  / 
2 ) ,  ( 1 K ( 2  x.  s ) ) ,  ( 1 L ( ( 2  x.  s )  -  1 ) ) ) )
6535simprd 479 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
1 K ( 2  x.  s ) )  =  ( F ` 
1 ) )
6643simprd 479 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( 1 L ( ( 2  x.  s
)  -  1 ) )  =  ( G `
 1 ) )
6746simprd 479 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( F `  1
)  =  ( G `
 1 ) )
6866, 67eqtr4d 2659 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( 1 L ( ( 2  x.  s
)  -  1 ) )  =  ( F `
 1 ) )
6965, 68ifeqda 4121 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( 1 K ( 2  x.  s
) ) ,  ( 1 L ( ( 2  x.  s )  -  1 ) ) )  =  ( F `
 1 ) )
7064, 69eqtrd 2656 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 M s )  =  ( F ` 
1 ) )
711, 2, 13, 50, 70isphtpyd 22785 1  |-  ( ph  ->  M  e.  ( F ( PHtpy `  J ) H ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   [,]cicc 12178  TopOnctopon 20715    Cn ccn 21028   IIcii 22678   Htpy chtpy 22766   PHtpycphtpy 22767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770
This theorem is referenced by:  phtpcer  22794  phtpcerOLD  22795
  Copyright terms: Public domain W3C validator