Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfco Structured version   Visualization version   Unicode version

Theorem smfco 41009
Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfco.s  |-  ( ph  ->  S  e. SAlg )
smfco.f  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
smfco.j  |-  J  =  ( topGen `  ran  (,) )
smfco.b  |-  B  =  (SalGen `  J )
smfco.h  |-  ( ph  ->  H  e.  (SMblFn `  B ) )
Assertion
Ref Expression
smfco  |-  ( ph  ->  ( H  o.  F
)  e.  (SMblFn `  S ) )

Proof of Theorem smfco
Dummy variables  x  e  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . 2  |-  F/ a
ph
2 smfco.s . 2  |-  ( ph  ->  S  e. SAlg )
3 cnvimass 5485 . . . 4  |-  ( `' F " dom  H
)  C_  dom  F
43a1i 11 . . 3  |-  ( ph  ->  ( `' F " dom  H )  C_  dom  F )
5 smfco.f . . . 4  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
6 eqid 2622 . . . 4  |-  dom  F  =  dom  F
72, 5, 6smfdmss 40942 . . 3  |-  ( ph  ->  dom  F  C_  U. S
)
84, 7sstrd 3613 . 2  |-  ( ph  ->  ( `' F " dom  H )  C_  U. S
)
9 smfco.j . . . . . . . . 9  |-  J  =  ( topGen `  ran  (,) )
10 retop 22565 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  Top
119, 10eqeltri 2697 . . . . . . . 8  |-  J  e. 
Top
1211a1i 11 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
13 smfco.b . . . . . . 7  |-  B  =  (SalGen `  J )
1412, 13salgencld 40567 . . . . . 6  |-  ( ph  ->  B  e. SAlg )
15 smfco.h . . . . . 6  |-  ( ph  ->  H  e.  (SMblFn `  B ) )
16 eqid 2622 . . . . . 6  |-  dom  H  =  dom  H
1714, 15, 16smff 40941 . . . . 5  |-  ( ph  ->  H : dom  H --> RR )
1817ffund 6049 . . . 4  |-  ( ph  ->  Fun  H )
192, 5, 6smff 40941 . . . . 5  |-  ( ph  ->  F : dom  F --> RR )
2019ffund 6049 . . . 4  |-  ( ph  ->  Fun  F )
2118, 20fco3 39421 . . 3  |-  ( ph  ->  ( H  o.  F
) : ( `' F " dom  H
) --> ran  H )
2217frnd 39426 . . 3  |-  ( ph  ->  ran  H  C_  RR )
2321, 22fssd 6057 . 2  |-  ( ph  ->  ( H  o.  F
) : ( `' F " dom  H
) --> RR )
2423adantr 481 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( H  o.  F ) : ( `' F " dom  H ) --> RR )
25 rexr 10085 . . . . . . 7  |-  ( a  e.  RR  ->  a  e.  RR* )
2625adantl 482 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  a  e. 
RR* )
2724, 26preimaioomnf 40929 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( `' ( H  o.  F
) " ( -oo (,) a ) )  =  { x  e.  ( `' F " dom  H
)  |  ( ( H  o.  F ) `
 x )  < 
a } )
2827eqcomd 2628 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  ( `' F " dom  H )  |  ( ( H  o.  F
) `  x )  <  a }  =  ( `' ( H  o.  F ) " ( -oo (,) a ) ) )
29 cnvco 5308 . . . . . 6  |-  `' ( H  o.  F )  =  ( `' F  o.  `' H )
3029imaeq1i 5463 . . . . 5  |-  ( `' ( H  o.  F
) " ( -oo (,) a ) )  =  ( ( `' F  o.  `' H ) " ( -oo (,) a ) )
3130a1i 11 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( `' ( H  o.  F
) " ( -oo (,) a ) )  =  ( ( `' F  o.  `' H ) " ( -oo (,) a ) ) )
32 imaco 5640 . . . . 5  |-  ( ( `' F  o.  `' H ) " ( -oo (,) a ) )  =  ( `' F " ( `' H "
( -oo (,) a ) ) )
3332a1i 11 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( `' F  o.  `' H ) " ( -oo (,) a ) )  =  ( `' F " ( `' H "
( -oo (,) a ) ) ) )
3428, 31, 333eqtrd 2660 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  ( `' F " dom  H )  |  ( ( H  o.  F
) `  x )  <  a }  =  ( `' F " ( `' H " ( -oo (,) a ) ) ) )
3517adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  RR )  ->  H : dom  H --> RR )
3635, 26preimaioomnf 40929 . . . . . . . 8  |-  ( (
ph  /\  a  e.  RR )  ->  ( `' H " ( -oo (,) a ) )  =  { x  e.  dom  H  |  ( H `  x )  <  a } )
3736eqcomd 2628 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  dom  H  |  ( H `  x )  <  a }  =  ( `' H " ( -oo (,) a ) ) )
3837eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( `' H " ( -oo (,) a ) )  =  { x  e.  dom  H  |  ( H `  x )  <  a } )
3914adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  B  e. SAlg
)
4015adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  H  e.  (SMblFn `  B )
)
41 simpr 477 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  a  e.  RR )
4239, 40, 16, 41smfpreimalt 40940 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  dom  H  |  ( H `  x )  <  a }  e.  ( Bt  dom  H ) )
4338, 42eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( `' H " ( -oo (,) a ) )  e.  ( Bt  dom  H ) )
4414elexd 3214 . . . . . . 7  |-  ( ph  ->  B  e.  _V )
4515dmexd 39422 . . . . . . 7  |-  ( ph  ->  dom  H  e.  _V )
46 elrest 16088 . . . . . . 7  |-  ( ( B  e.  _V  /\  dom  H  e.  _V )  ->  ( ( `' H " ( -oo (,) a
) )  e.  ( Bt 
dom  H )  <->  E. e  e.  B  ( `' H " ( -oo (,) a ) )  =  ( e  i^i  dom  H ) ) )
4744, 45, 46syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( `' H " ( -oo (,) a
) )  e.  ( Bt 
dom  H )  <->  E. e  e.  B  ( `' H " ( -oo (,) a ) )  =  ( e  i^i  dom  H ) ) )
4847adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( `' H " ( -oo (,) a ) )  e.  ( Bt  dom  H )  <->  E. e  e.  B  ( `' H " ( -oo (,) a ) )  =  ( e  i^i  dom  H ) ) )
4943, 48mpbid 222 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  E. e  e.  B  ( `' H " ( -oo (,) a ) )  =  ( e  i^i  dom  H ) )
50 imaeq2 5462 . . . . . . . . 9  |-  ( ( `' H " ( -oo (,) a ) )  =  ( e  i^i  dom  H )  ->  ( `' F " ( `' H " ( -oo (,) a
) ) )  =  ( `' F "
( e  i^i  dom  H ) ) )
51503ad2ant3 1084 . . . . . . . 8  |-  ( (
ph  /\  e  e.  B  /\  ( `' H " ( -oo (,) a
) )  =  ( e  i^i  dom  H
) )  ->  ( `' F " ( `' H " ( -oo (,) a ) ) )  =  ( `' F " ( e  i^i  dom  H ) ) )
52 ovexd 6680 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  B )  ->  ( St  dom  F )  e.  _V )
535elexd 3214 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  _V )
54 cnvexg 7112 . . . . . . . . . . . . . 14  |-  ( F  e.  _V  ->  `' F  e.  _V )
5553, 54syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  `' F  e.  _V )
56 imaexg 7103 . . . . . . . . . . . . 13  |-  ( `' F  e.  _V  ->  ( `' F " dom  H
)  e.  _V )
5755, 56syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F " dom  H )  e.  _V )
5857adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  B )  ->  ( `' F " dom  H
)  e.  _V )
592adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  B )  ->  S  e. SAlg )
605adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  B )  ->  F  e.  (SMblFn `  S )
)
61 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  B )  ->  e  e.  B )
62 eqid 2622 . . . . . . . . . . . 12  |-  ( `' F " e )  =  ( `' F " e )
6359, 60, 6, 9, 13, 61, 62smfpimbor1 41007 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  B )  ->  ( `' F " e )  e.  ( St  dom  F
) )
64 eqid 2622 . . . . . . . . . . 11  |-  ( ( `' F " e )  i^i  ( `' F " dom  H ) )  =  ( ( `' F " e )  i^i  ( `' F " dom  H ) )
6552, 58, 63, 64elrestd 39291 . . . . . . . . . 10  |-  ( (
ph  /\  e  e.  B )  ->  (
( `' F "
e )  i^i  ( `' F " dom  H
) )  e.  ( ( St  dom  F )t  ( `' F " dom  H
) ) )
66 inpreima 6342 . . . . . . . . . . . . 13  |-  ( Fun 
F  ->  ( `' F " ( e  i^i 
dom  H ) )  =  ( ( `' F " e )  i^i  ( `' F " dom  H ) ) )
6720, 66syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F "
( e  i^i  dom  H ) )  =  ( ( `' F "
e )  i^i  ( `' F " dom  H
) ) )
6867adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  B )  ->  ( `' F " ( e  i^i  dom  H )
)  =  ( ( `' F " e )  i^i  ( `' F " dom  H ) ) )
695dmexd 39422 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  F  e.  _V )
70 restabs 20969 . . . . . . . . . . . . . 14  |-  ( ( S  e. SAlg  /\  ( `' F " dom  H
)  C_  dom  F  /\  dom  F  e.  _V )  ->  ( ( St  dom  F
)t  ( `' F " dom  H ) )  =  ( St  ( `' F " dom  H ) ) )
712, 4, 69, 70syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( St  dom  F
)t  ( `' F " dom  H ) )  =  ( St  ( `' F " dom  H ) ) )
7271eqcomd 2628 . . . . . . . . . . . 12  |-  ( ph  ->  ( St  ( `' F " dom  H ) )  =  ( ( St  dom 
F )t  ( `' F " dom  H ) ) )
7372adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  B )  ->  ( St  ( `' F " dom  H
) )  =  ( ( St  dom  F )t  ( `' F " dom  H
) ) )
7468, 73eleq12d 2695 . . . . . . . . . 10  |-  ( (
ph  /\  e  e.  B )  ->  (
( `' F "
( e  i^i  dom  H ) )  e.  ( St  ( `' F " dom  H ) )  <->  ( ( `' F " e )  i^i  ( `' F " dom  H ) )  e.  ( ( St  dom 
F )t  ( `' F " dom  H ) ) ) )
7565, 74mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  B )  ->  ( `' F " ( e  i^i  dom  H )
)  e.  ( St  ( `' F " dom  H
) ) )
76753adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  e  e.  B  /\  ( `' H " ( -oo (,) a
) )  =  ( e  i^i  dom  H
) )  ->  ( `' F " ( e  i^i  dom  H )
)  e.  ( St  ( `' F " dom  H
) ) )
7751, 76eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  e  e.  B  /\  ( `' H " ( -oo (,) a
) )  =  ( e  i^i  dom  H
) )  ->  ( `' F " ( `' H " ( -oo (,) a ) ) )  e.  ( St  ( `' F " dom  H
) ) )
78773exp 1264 . . . . . 6  |-  ( ph  ->  ( e  e.  B  ->  ( ( `' H " ( -oo (,) a
) )  =  ( e  i^i  dom  H
)  ->  ( `' F " ( `' H " ( -oo (,) a
) ) )  e.  ( St  ( `' F " dom  H ) ) ) ) )
7978adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( e  e.  B  ->  (
( `' H "
( -oo (,) a ) )  =  ( e  i^i  dom  H )  ->  ( `' F "
( `' H "
( -oo (,) a ) ) )  e.  ( St  ( `' F " dom  H ) ) ) ) )
8079rexlimdv 3030 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( E. e  e.  B  ( `' H " ( -oo (,) a ) )  =  ( e  i^i  dom  H )  ->  ( `' F " ( `' H " ( -oo (,) a
) ) )  e.  ( St  ( `' F " dom  H ) ) ) )
8149, 80mpd 15 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( `' F " ( `' H " ( -oo (,) a ) ) )  e.  ( St  ( `' F " dom  H
) ) )
8234, 81eqeltrd 2701 . 2  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  ( `' F " dom  H )  |  ( ( H  o.  F
) `  x )  <  a }  e.  ( St  ( `' F " dom  H ) ) )
831, 2, 8, 23, 82issmfd 40944 1  |-  ( ph  ->  ( H  o.  F
)  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   -oocmnf 10072   RR*cxr 10073    < clt 10074   (,)cioo 12175   ↾t crest 16081   topGenctg 16098   Topctop 20698  SAlgcsalg 40528  SalGencsalgen 40532  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-salg 40529  df-salgen 40533  df-smblfn 40910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator