Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupxr Structured version   Visualization version   Unicode version

Theorem smfsupxr 41022
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupxr.n  |-  F/_ n F
smfsupxr.x  |-  F/_ x F
smfsupxr.m  |-  ( ph  ->  M  e.  ZZ )
smfsupxr.z  |-  Z  =  ( ZZ>= `  M )
smfsupxr.s  |-  ( ph  ->  S  e. SAlg )
smfsupxr.f  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
smfsupxr.d  |-  D  =  { x  e.  |^|_ n  e.  Z  dom  ( F `  n )  |  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  )  e.  RR }
smfsupxr.g  |-  G  =  ( x  e.  D  |->  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  ) )
Assertion
Ref Expression
smfsupxr  |-  ( ph  ->  G  e.  (SMblFn `  S ) )
Distinct variable groups:    n, Z, x    ph, n, x
Allowed substitution hints:    D( x, n)    S( x, n)    F( x, n)    G( x, n)    M( x, n)

Proof of Theorem smfsupxr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 smfsupxr.g . . . 4  |-  G  =  ( x  e.  D  |->  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  ) )
21a1i 11 . . 3  |-  ( ph  ->  G  =  ( x  e.  D  |->  sup ( ran  ( n  e.  Z  |->  ( ( F `  n ) `  x
) ) ,  RR* ,  <  ) ) )
3 smfsupxr.d . . . . . 6  |-  D  =  { x  e.  |^|_ n  e.  Z  dom  ( F `  n )  |  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  )  e.  RR }
43a1i 11 . . . . 5  |-  ( ph  ->  D  =  { x  e.  |^|_ n  e.  Z  dom  ( F `  n
)  |  sup ( ran  ( n  e.  Z  |->  ( ( F `  n ) `  x
) ) ,  RR* ,  <  )  e.  RR } )
5 nfv 1843 . . . . . . . 8  |-  F/ n ph
6 nfcv 2764 . . . . . . . . 9  |-  F/_ n x
7 nfii1 4551 . . . . . . . . 9  |-  F/_ n |^|_ n  e.  Z  dom  ( F `  n )
86, 7nfel 2777 . . . . . . . 8  |-  F/ n  x  e.  |^|_ n  e.  Z  dom  ( F `
 n )
95, 8nfan 1828 . . . . . . 7  |-  F/ n
( ph  /\  x  e.  |^|_ n  e.  Z  dom  ( F `  n
) )
10 smfsupxr.m . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
11 smfsupxr.z . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
1210, 11uzn0d 39652 . . . . . . . 8  |-  ( ph  ->  Z  =/=  (/) )
1312adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  |^|_
n  e.  Z  dom  ( F `  n ) )  ->  Z  =/=  (/) )
14 smfsupxr.s . . . . . . . . . . 11  |-  ( ph  ->  S  e. SAlg )
1514adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  Z )  ->  S  e. SAlg )
16 smfsupxr.f . . . . . . . . . . 11  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
1716ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  (SMblFn `  S )
)
18 eqid 2622 . . . . . . . . . 10  |-  dom  ( F `  n )  =  dom  ( F `  n )
1915, 17, 18smff 40941 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n ) : dom  ( F `  n ) --> RR )
2019adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  |^|_ n  e.  Z  dom  ( F `  n
) )  /\  n  e.  Z )  ->  ( F `  n ) : dom  ( F `  n ) --> RR )
21 eliinid 39294 . . . . . . . . 9  |-  ( ( x  e.  |^|_ n  e.  Z  dom  ( F `
 n )  /\  n  e.  Z )  ->  x  e.  dom  ( F `  n )
)
2221adantll 750 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  |^|_ n  e.  Z  dom  ( F `  n
) )  /\  n  e.  Z )  ->  x  e.  dom  ( F `  n ) )
2320, 22ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  |^|_ n  e.  Z  dom  ( F `  n
) )  /\  n  e.  Z )  ->  (
( F `  n
) `  x )  e.  RR )
249, 13, 23supxrre3rnmpt 39656 . . . . . 6  |-  ( (
ph  /\  x  e.  |^|_
n  e.  Z  dom  ( F `  n ) )  ->  ( sup ( ran  ( n  e.  Z  |->  ( ( F `
 n ) `  x ) ) , 
RR* ,  <  )  e.  RR  <->  E. y  e.  RR  A. n  e.  Z  ( ( F `  n
) `  x )  <_  y ) )
2524rabbidva 3188 . . . . 5  |-  ( ph  ->  { x  e.  |^|_ n  e.  Z  dom  ( F `  n )  |  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  )  e.  RR }  =  { x  e.  |^|_ n  e.  Z  dom  ( F `
 n )  |  E. y  e.  RR  A. n  e.  Z  ( ( F `  n
) `  x )  <_  y } )
264, 25eqtrd 2656 . . . 4  |-  ( ph  ->  D  =  { x  e.  |^|_ n  e.  Z  dom  ( F `  n
)  |  E. y  e.  RR  A. n  e.  Z  ( ( F `
 n ) `  x )  <_  y } )
27 nfmpt1 4747 . . . . . . . . . . . 12  |-  F/_ n
( n  e.  Z  |->  ( ( F `  n ) `  x
) )
2827nfrn 5368 . . . . . . . . . . 11  |-  F/_ n ran  ( n  e.  Z  |->  ( ( F `  n ) `  x
) )
29 nfcv 2764 . . . . . . . . . . 11  |-  F/_ n RR*
30 nfcv 2764 . . . . . . . . . . 11  |-  F/_ n  <
3128, 29, 30nfsup 8357 . . . . . . . . . 10  |-  F/_ n sup ( ran  ( n  e.  Z  |->  ( ( F `  n ) `
 x ) ) ,  RR* ,  <  )
32 nfcv 2764 . . . . . . . . . 10  |-  F/_ n RR
3331, 32nfel 2777 . . . . . . . . 9  |-  F/ n sup ( ran  ( n  e.  Z  |->  ( ( F `  n ) `
 x ) ) ,  RR* ,  <  )  e.  RR
3433, 7nfrab 3123 . . . . . . . 8  |-  F/_ n { x  e.  |^|_ n  e.  Z  dom  ( F `
 n )  |  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  )  e.  RR }
353, 34nfcxfr 2762 . . . . . . 7  |-  F/_ n D
366, 35nfel 2777 . . . . . 6  |-  F/ n  x  e.  D
375, 36nfan 1828 . . . . 5  |-  F/ n
( ph  /\  x  e.  D )
3812adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  Z  =/=  (/) )
3919adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  n  e.  Z )  ->  ( F `  n ) : dom  ( F `  n ) --> RR )
40 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x Z
41 smfsupxr.x . . . . . . . . . . . . . 14  |-  F/_ x F
42 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x n
4341, 42nffv 6198 . . . . . . . . . . . . 13  |-  F/_ x
( F `  n
)
4443nfdm 5367 . . . . . . . . . . . 12  |-  F/_ x dom  ( F `  n
)
4540, 44nfiin 4549 . . . . . . . . . . 11  |-  F/_ x |^|_ n  e.  Z  dom  ( F `  n )
4645ssrab2f 39300 . . . . . . . . . 10  |-  { x  e.  |^|_ n  e.  Z  dom  ( F `  n
)  |  sup ( ran  ( n  e.  Z  |->  ( ( F `  n ) `  x
) ) ,  RR* ,  <  )  e.  RR }  C_  |^|_ n  e.  Z  dom  ( F `  n
)
473, 46eqsstri 3635 . . . . . . . . 9  |-  D  C_  |^|_
n  e.  Z  dom  ( F `  n )
48 id 22 . . . . . . . . 9  |-  ( x  e.  D  ->  x  e.  D )
4947, 48sseldi 3601 . . . . . . . 8  |-  ( x  e.  D  ->  x  e.  |^|_ n  e.  Z  dom  ( F `  n
) )
5049, 21sylan 488 . . . . . . 7  |-  ( ( x  e.  D  /\  n  e.  Z )  ->  x  e.  dom  ( F `  n )
)
5150adantll 750 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  n  e.  Z )  ->  x  e.  dom  ( F `  n ) )
5239, 51ffvelrnd 6360 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  n  e.  Z )  ->  (
( F `  n
) `  x )  e.  RR )
5348, 3syl6eleq 2711 . . . . . . . 8  |-  ( x  e.  D  ->  x  e.  { x  e.  |^|_ n  e.  Z  dom  ( F `  n )  |  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  )  e.  RR } )
54 rabidim2 39284 . . . . . . . 8  |-  ( x  e.  { x  e. 
|^|_ n  e.  Z  dom  ( F `  n
)  |  sup ( ran  ( n  e.  Z  |->  ( ( F `  n ) `  x
) ) ,  RR* ,  <  )  e.  RR }  ->  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  )  e.  RR )
5553, 54syl 17 . . . . . . 7  |-  ( x  e.  D  ->  sup ( ran  ( n  e.  Z  |->  ( ( F `
 n ) `  x ) ) , 
RR* ,  <  )  e.  RR )
5655adantl 482 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  sup ( ran  ( n  e.  Z  |->  ( ( F `
 n ) `  x ) ) , 
RR* ,  <  )  e.  RR )
5749adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  |^|_ n  e.  Z  dom  ( F `  n
) )
5857, 24syldan 487 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  ( sup ( ran  ( n  e.  Z  |->  ( ( F `  n ) `
 x ) ) ,  RR* ,  <  )  e.  RR  <->  E. y  e.  RR  A. n  e.  Z  ( ( F `  n
) `  x )  <_  y ) )
5956, 58mpbid 222 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  E. y  e.  RR  A. n  e.  Z  ( ( F `
 n ) `  x )  <_  y
)
6037, 38, 52, 59supxrrernmpt 39648 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  sup ( ran  ( n  e.  Z  |->  ( ( F `
 n ) `  x ) ) , 
RR* ,  <  )  =  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
6126, 60mpteq12dva 4732 . . 3  |-  ( ph  ->  ( x  e.  D  |->  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR* ,  <  ) )  =  ( x  e.  { x  e. 
|^|_ n  e.  Z  dom  ( F `  n
)  |  E. y  e.  RR  A. n  e.  Z  ( ( F `
 n ) `  x )  <_  y }  |->  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) ) )
622, 61eqtrd 2656 . 2  |-  ( ph  ->  G  =  ( x  e.  { x  e. 
|^|_ n  e.  Z  dom  ( F `  n
)  |  E. y  e.  RR  A. n  e.  Z  ( ( F `
 n ) `  x )  <_  y }  |->  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) ) )
63 smfsupxr.n . . 3  |-  F/_ n F
64 eqid 2622 . . 3  |-  { x  e.  |^|_ n  e.  Z  dom  ( F `  n
)  |  E. y  e.  RR  A. n  e.  Z  ( ( F `
 n ) `  x )  <_  y }  =  { x  e.  |^|_ n  e.  Z  dom  ( F `  n
)  |  E. y  e.  RR  A. n  e.  Z  ( ( F `
 n ) `  x )  <_  y }
65 eqid 2622 . . 3  |-  ( x  e.  { x  e. 
|^|_ n  e.  Z  dom  ( F `  n
)  |  E. y  e.  RR  A. n  e.  Z  ( ( F `
 n ) `  x )  <_  y }  |->  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )  =  ( x  e.  { x  e.  |^|_ n  e.  Z  dom  ( F `  n
)  |  E. y  e.  RR  A. n  e.  Z  ( ( F `
 n ) `  x )  <_  y }  |->  sup ( ran  (
n  e.  Z  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
6663, 41, 10, 11, 14, 16, 64, 65smfsup 41020 . 2  |-  ( ph  ->  ( x  e.  {
x  e.  |^|_ n  e.  Z  dom  ( F `
 n )  |  E. y  e.  RR  A. n  e.  Z  ( ( F `  n
) `  x )  <_  y }  |->  sup ( ran  ( n  e.  Z  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  ) )  e.  (SMblFn `  S )
)
6762, 66eqeltrd 2701 1  |-  ( ph  ->  G  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   (/)c0 3915   |^|_ciin 4521   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888   supcsup 8346   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ioc 12180  df-ico 12181  df-fl 12593  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-salg 40529  df-salgen 40533  df-smblfn 40910
This theorem is referenced by:  smflimsuplem3  41028
  Copyright terms: Public domain W3C validator