Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem49 Structured version   Visualization version   Unicode version

Theorem stoweidlem49 40266
Description: There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < ε on  T  \  U, and qn > 1 - ε on  V. Here y is used to represent the final qn in the paper (the one with n large enough),  N represents  n in the paper,  K represents  k,  D represents δ,  E represents ε, and  P represents  p. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem49.1  |-  F/_ t P
stoweidlem49.2  |-  F/ t
ph
stoweidlem49.3  |-  V  =  { t  e.  T  |  ( P `  t )  <  ( D  /  2 ) }
stoweidlem49.4  |-  ( ph  ->  D  e.  RR+ )
stoweidlem49.5  |-  ( ph  ->  D  <  1 )
stoweidlem49.6  |-  ( ph  ->  P  e.  A )
stoweidlem49.7  |-  ( ph  ->  P : T --> RR )
stoweidlem49.8  |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) )
stoweidlem49.9  |-  ( ph  ->  A. t  e.  ( T  \  U ) D  <_  ( P `  t ) )
stoweidlem49.10  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem49.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem49.12  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem49.13  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem49.14  |-  ( ph  ->  E  e.  RR+ )
Assertion
Ref Expression
stoweidlem49  |-  ( ph  ->  E. y  e.  A  ( A. t  e.  T  ( 0  <_  (
y `  t )  /\  ( y `  t
)  <_  1 )  /\  A. t  e.  V  ( 1  -  E )  <  (
y `  t )  /\  A. t  e.  ( T  \  U ) ( y `  t
)  <  E )
)
Distinct variable groups:    f, g,
t, A    D, f,
g, t    f, E, g, t    P, f, g    T, f, g, t    ph, f,
g    x, D    x, E    ph, x    y, t, A   
y, U    y, V    x, t, A    x, T    y, E    y, P    y, T
Allowed substitution hints:    ph( y, t)    D( y)    P( x, t)    U( x, t, f, g)    V( x, t, f, g)

Proof of Theorem stoweidlem49
Dummy variables  k  n  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . 5  |-  ( j  =  i  ->  (
( 1  /  D
)  <  j  <->  ( 1  /  D )  < 
i ) )
21cbvrabv 3199 . . . 4  |-  { j  e.  NN  |  ( 1  /  D )  <  j }  =  { i  e.  NN  |  ( 1  /  D )  <  i }
3 stoweidlem49.4 . . . 4  |-  ( ph  ->  D  e.  RR+ )
4 stoweidlem49.5 . . . 4  |-  ( ph  ->  D  <  1 )
52, 3, 4stoweidlem14 40231 . . 3  |-  ( ph  ->  E. k  e.  NN  ( 1  <  (
k  x.  D )  /\  ( ( k  x.  D )  / 
2 )  <  1
) )
6 eqid 2622 . . . . . 6  |-  ( i  e.  NN0  |->  ( ( 1  /  ( k  x.  D ) ) ^ i ) )  =  ( i  e. 
NN0  |->  ( ( 1  /  ( k  x.  D ) ) ^
i ) )
7 eqid 2622 . . . . . 6  |-  ( i  e.  NN0  |->  ( ( ( k  x.  D
)  /  2 ) ^ i ) )  =  ( i  e. 
NN0  |->  ( ( ( k  x.  D )  /  2 ) ^
i ) )
8 nnre 11027 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  RR )
98adantl 482 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  RR )
103rpred 11872 . . . . . . . . 9  |-  ( ph  ->  D  e.  RR )
1110adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  D  e.  RR )
129, 11remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  x.  D )  e.  RR )
1312adantr 481 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) )  ->  ( k  x.  D )  e.  RR )
14 simprl 794 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) )  ->  1  <  (
k  x.  D ) )
1512rehalfcld 11279 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  x.  D )  /  2 )  e.  RR )
16 nngt0 11049 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  0  <  k )
1716adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
k )
183rpgt0d 11875 . . . . . . . . . . 11  |-  ( ph  ->  0  <  D )
1918adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
D )
209, 11, 17, 19mulgt0d 10192 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
( k  x.  D
) )
21 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
22 2pos 11112 . . . . . . . . . . 11  |-  0  <  2
2321, 22pm3.2i 471 . . . . . . . . . 10  |-  ( 2  e.  RR  /\  0  <  2 )
2423a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2  e.  RR  /\  0  <  2 ) )
25 divgt0 10891 . . . . . . . . 9  |-  ( ( ( ( k  x.  D )  e.  RR  /\  0  <  ( k  x.  D ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( (
k  x.  D )  /  2 ) )
2612, 20, 24, 25syl21anc 1325 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
( ( k  x.  D )  /  2
) )
2715, 26elrpd 11869 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  x.  D )  /  2 )  e.  RR+ )
2827adantr 481 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) )  ->  ( ( k  x.  D )  / 
2 )  e.  RR+ )
29 simprr 796 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) )  ->  ( ( k  x.  D )  / 
2 )  <  1
)
30 stoweidlem49.14 . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
3130ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) )  ->  E  e.  RR+ )
326, 7, 13, 14, 28, 29, 31stoweidlem7 40224 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  <  ( k  x.  D )  /\  (
( k  x.  D
)  /  2 )  <  1 ) )  ->  E. n  e.  NN  ( ( 1  -  E )  <  (
1  -  ( ( ( k  x.  D
)  /  2 ) ^ n ) )  /\  ( 1  / 
( ( k  x.  D ) ^ n
) )  <  E
) )
3332ex 450 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  <  ( k  x.  D )  /\  ( ( k  x.  D )  /  2
)  <  1 )  ->  E. n  e.  NN  ( ( 1  -  E )  <  (
1  -  ( ( ( k  x.  D
)  /  2 ) ^ n ) )  /\  ( 1  / 
( ( k  x.  D ) ^ n
) )  <  E
) ) )
3433reximdva 3017 . . 3  |-  ( ph  ->  ( E. k  e.  NN  ( 1  < 
( k  x.  D
)  /\  ( (
k  x.  D )  /  2 )  <  1 )  ->  E. k  e.  NN  E. n  e.  NN  ( ( 1  -  E )  < 
( 1  -  (
( ( k  x.  D )  /  2
) ^ n ) )  /\  ( 1  /  ( ( k  x.  D ) ^
n ) )  < 
E ) ) )
355, 34mpd 15 . 2  |-  ( ph  ->  E. k  e.  NN  E. n  e.  NN  (
( 1  -  E
)  <  ( 1  -  ( ( ( k  x.  D )  /  2 ) ^
n ) )  /\  ( 1  /  (
( k  x.  D
) ^ n ) )  <  E ) )
36 stoweidlem49.1 . . . . 5  |-  F/_ t P
37 stoweidlem49.2 . . . . . . 7  |-  F/ t
ph
38 nfv 1843 . . . . . . 7  |-  F/ t ( k  e.  NN  /\  n  e.  NN )
3937, 38nfan 1828 . . . . . 6  |-  F/ t ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)
40 nfv 1843 . . . . . 6  |-  F/ t ( ( 1  -  E )  <  (
1  -  ( ( ( k  x.  D
)  /  2 ) ^ n ) )  /\  ( 1  / 
( ( k  x.  D ) ^ n
) )  <  E
)
4139, 40nfan 1828 . . . . 5  |-  F/ t ( ( ph  /\  ( k  e.  NN  /\  n  e.  NN ) )  /\  ( ( 1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )
42 stoweidlem49.3 . . . . 5  |-  V  =  { t  e.  T  |  ( P `  t )  <  ( D  /  2 ) }
43 eqid 2622 . . . . 5  |-  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ n ) ) ^ ( k ^
n ) ) )  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `
 t ) ^
n ) ) ^
( k ^ n
) ) )
44 simplrr 801 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  n  e.  NN )
45 simplrl 800 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  k  e.  NN )
463ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  D  e.  RR+ )
474ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  D  <  1
)
48 stoweidlem49.6 . . . . . 6  |-  ( ph  ->  P  e.  A )
4948ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  P  e.  A
)
50 stoweidlem49.7 . . . . . 6  |-  ( ph  ->  P : T --> RR )
5150ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  P : T --> RR )
52 stoweidlem49.8 . . . . . 6  |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) )
5352ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) )
54 stoweidlem49.9 . . . . . 6  |-  ( ph  ->  A. t  e.  ( T  \  U ) D  <_  ( P `  t ) )
5554ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  A. t  e.  ( T  \  U ) D  <_  ( P `  t ) )
56 stoweidlem49.10 . . . . . 6  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
5756ad4ant14 1293 . . . . 5  |-  ( ( ( ( ph  /\  ( k  e.  NN  /\  n  e.  NN ) )  /\  ( ( 1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  /\  f  e.  A
)  ->  f : T
--> RR )
58 simp1ll 1124 . . . . . 6  |-  ( ( ( ( ph  /\  ( k  e.  NN  /\  n  e.  NN ) )  /\  ( ( 1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ph )
59 stoweidlem49.11 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
6058, 59syld3an1 1372 . . . . 5  |-  ( ( ( ( ph  /\  ( k  e.  NN  /\  n  e.  NN ) )  /\  ( ( 1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
61 stoweidlem49.12 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6258, 61syld3an1 1372 . . . . 5  |-  ( ( ( ( ph  /\  ( k  e.  NN  /\  n  e.  NN ) )  /\  ( ( 1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
63 stoweidlem49.13 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
6463ad4ant14 1293 . . . . 5  |-  ( ( ( ( ph  /\  ( k  e.  NN  /\  n  e.  NN ) )  /\  ( ( 1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
6530ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  E  e.  RR+ )
66 simprl 794 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  ( 1  -  E )  <  (
1  -  ( ( ( k  x.  D
)  /  2 ) ^ n ) ) )
67 simprr 796 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  ( 1  / 
( ( k  x.  D ) ^ n
) )  <  E
)
6836, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 60, 62, 64, 65, 66, 67stoweidlem45 40262 . . . 4  |-  ( ( ( ph  /\  (
k  e.  NN  /\  n  e.  NN )
)  /\  ( (
1  -  E )  <  ( 1  -  ( ( ( k  x.  D )  / 
2 ) ^ n
) )  /\  (
1  /  ( ( k  x.  D ) ^ n ) )  <  E ) )  ->  E. y  e.  A  ( A. t  e.  T  ( 0  <_  (
y `  t )  /\  ( y `  t
)  <_  1 )  /\  A. t  e.  V  ( 1  -  E )  <  (
y `  t )  /\  A. t  e.  ( T  \  U ) ( y `  t
)  <  E )
)
6968ex 450 . . 3  |-  ( (
ph  /\  ( k  e.  NN  /\  n  e.  NN ) )  -> 
( ( ( 1  -  E )  < 
( 1  -  (
( ( k  x.  D )  /  2
) ^ n ) )  /\  ( 1  /  ( ( k  x.  D ) ^
n ) )  < 
E )  ->  E. y  e.  A  ( A. t  e.  T  (
0  <_  ( y `  t )  /\  (
y `  t )  <_  1 )  /\  A. t  e.  V  (
1  -  E )  <  ( y `  t )  /\  A. t  e.  ( T  \  U ) ( y `
 t )  < 
E ) ) )
7069rexlimdvva 3038 . 2  |-  ( ph  ->  ( E. k  e.  NN  E. n  e.  NN  ( ( 1  -  E )  < 
( 1  -  (
( ( k  x.  D )  /  2
) ^ n ) )  /\  ( 1  /  ( ( k  x.  D ) ^
n ) )  < 
E )  ->  E. y  e.  A  ( A. t  e.  T  (
0  <_  ( y `  t )  /\  (
y `  t )  <_  1 )  /\  A. t  e.  V  (
1  -  E )  <  ( y `  t )  /\  A. t  e.  ( T  \  U ) ( y `
 t )  < 
E ) ) )
7135, 70mpd 15 1  |-  ( ph  ->  E. y  e.  A  ( A. t  e.  T  ( 0  <_  (
y `  t )  /\  ( y `  t
)  <_  1 )  /\  A. t  e.  V  ( 1  -  E )  <  (
y `  t )  /\  A. t  e.  ( T  \  U ) ( y `  t
)  <  E )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   RR+crp 11832   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by:  stoweidlem52  40269
  Copyright terms: Public domain W3C validator