Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Structured version   Visualization version   Unicode version

Theorem stoweidlem50 40267
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1  |-  F/_ t U
stoweidlem50.2  |-  F/ t
ph
stoweidlem50.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem50.4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem50.5  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
stoweidlem50.6  |-  T  = 
U. J
stoweidlem50.7  |-  C  =  ( J  Cn  K
)
stoweidlem50.8  |-  ( ph  ->  J  e.  Comp )
stoweidlem50.9  |-  ( ph  ->  A  C_  C )
stoweidlem50.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem50.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem50.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem50.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem50.14  |-  ( ph  ->  U  e.  J )
stoweidlem50.15  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem50  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Distinct variable groups:    u, J    u, T    u, U    u, W    f, g, h, t, T    f, q, g, t, T    f, r, A, q, t    x, f, q, t, T    Q, f, g    U, f, g, q    f, Z, g, h, t    ph, f,
g, q    w, g, h, t, T    A, g, h    g, W    Z, q, x    T, r    U, r    ph, r    t, J, w   
t, K    ph, u    w, Q    x, A    x, U    ph, x
Allowed substitution hints:    ph( w, t, h)    A( w, u)    C( x, w, u, t, f, g, h, r, q)    Q( x, u, t, h, r, q)    U( w, t, h)    J( x, f, g, h, r, q)    K( x, w, u, f, g, h, r, q)    W( x, w, t, f, h, r, q)    Z( w, u, r)

Proof of Theorem stoweidlem50
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3  |-  F/_ t U
2 stoweidlem50.4 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
3 nfrab1 3122 . . . 4  |-  F/_ h { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
42, 3nfcxfr 2762 . . 3  |-  F/_ h Q
5 nfv 1843 . . 3  |-  F/ q
ph
6 stoweidlem50.2 . . 3  |-  F/ t
ph
7 stoweidlem50.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
8 stoweidlem50.5 . . 3  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
9 stoweidlem50.6 . . 3  |-  T  = 
U. J
10 stoweidlem50.8 . . 3  |-  ( ph  ->  J  e.  Comp )
11 stoweidlem50.9 . . . 4  |-  ( ph  ->  A  C_  C )
12 stoweidlem50.7 . . . 4  |-  C  =  ( J  Cn  K
)
1311, 12syl6sseq 3651 . . 3  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
14 stoweidlem50.10 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
15 stoweidlem50.11 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
16 stoweidlem50.12 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
17 stoweidlem50.13 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
18 stoweidlem50.14 . . 3  |-  ( ph  ->  U  e.  J )
19 stoweidlem50.15 . . 3  |-  ( ph  ->  Z  e.  U )
20 uniexg 6955 . . . . 5  |-  ( J  e.  Comp  ->  U. J  e.  _V )
2110, 20syl 17 . . . 4  |-  ( ph  ->  U. J  e.  _V )
229, 21syl5eqel 2705 . . 3  |-  ( ph  ->  T  e.  _V )
231, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22stoweidlem46 40263 . 2  |-  ( ph  ->  ( T  \  U
)  C_  U. W )
24 dfin4 3867 . . . . . . . . . . 11  |-  ( T  i^i  U )  =  ( T  \  ( T  \  U ) )
25 elssuni 4467 . . . . . . . . . . . . . 14  |-  ( U  e.  J  ->  U  C_ 
U. J )
2618, 25syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  U  C_  U. J )
2726, 9syl6sseqr 3652 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  T )
28 sseqin2 3817 . . . . . . . . . . . 12  |-  ( U 
C_  T  <->  ( T  i^i  U )  =  U )
2927, 28sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ( T  i^i  U
)  =  U )
3024, 29syl5eqr 2670 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  ( T  \  U ) )  =  U )
3130, 18eqeltrd 2701 . . . . . . . . 9  |-  ( ph  ->  ( T  \  ( T  \  U ) )  e.  J )
32 cmptop 21198 . . . . . . . . . . 11  |-  ( J  e.  Comp  ->  J  e. 
Top )
3310, 32syl 17 . . . . . . . . . 10  |-  ( ph  ->  J  e.  Top )
34 difssd 3738 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  U
)  C_  T )
359iscld2 20832 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3633, 34, 35syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3731, 36mpbird 247 . . . . . . . 8  |-  ( ph  ->  ( T  \  U
)  e.  ( Clsd `  J ) )
38 cmpcld 21205 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  ( T  \  U )  e.  ( Clsd `  J
) )  ->  ( Jt  ( T  \  U ) )  e.  Comp )
3910, 37, 38syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( Jt  ( T  \  U ) )  e. 
Comp )
409cmpsub 21203 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4133, 34, 40syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4239, 41mpbid 222 . . . . . 6  |-  ( ph  ->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) )
43 ssrab2 3687 . . . . . . . 8  |-  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  (
h `  t ) } }  C_  J
448, 43eqsstri 3635 . . . . . . 7  |-  W  C_  J
458, 10rabexd 4814 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
46 elpwg 4166 . . . . . . . 8  |-  ( W  e.  _V  ->  ( W  e.  ~P J  <->  W 
C_  J ) )
4745, 46syl 17 . . . . . . 7  |-  ( ph  ->  ( W  e.  ~P J 
<->  W  C_  J )
)
4844, 47mpbiri 248 . . . . . 6  |-  ( ph  ->  W  e.  ~P J
)
49 unieq 4444 . . . . . . . . 9  |-  ( c  =  W  ->  U. c  =  U. W )
5049sseq2d 3633 . . . . . . . 8  |-  ( c  =  W  ->  (
( T  \  U
)  C_  U. c  <->  ( T  \  U ) 
C_  U. W ) )
51 pweq 4161 . . . . . . . . . 10  |-  ( c  =  W  ->  ~P c  =  ~P W
)
5251ineq1d 3813 . . . . . . . . 9  |-  ( c  =  W  ->  ( ~P c  i^i  Fin )  =  ( ~P W  i^i  Fin ) )
5352rexeqdv 3145 . . . . . . . 8  |-  ( c  =  W  ->  ( E. u  e.  ( ~P c  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u
) )
5450, 53imbi12d 334 . . . . . . 7  |-  ( c  =  W  ->  (
( ( T  \  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i  Fin ) ( T  \  U )  C_  U. u
)  <->  ( ( T 
\  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) ) )
5554rspccva 3308 . . . . . 6  |-  ( ( A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u )  /\  W  e.  ~P J )  -> 
( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
5642, 48, 55syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
5756imp 445 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
)
58 df-rex 2918 . . . 4  |-  ( E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u ) )
5957, 58sylib 208 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U )  C_  U. u
) )
60 elinel2 3800 . . . . . . 7  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  Fin )
6160ad2antrl 764 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  Fin )
62 elinel1 3799 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  ~P W )
6362ad2antrl 764 . . . . . . 7  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  ~P W )
6463elpwid 4170 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  C_  W )
65 simprr 796 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  ( T  \  U )  C_  U. u )
6661, 64, 653jca 1242 . . . . 5  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
6766ex 450 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
)  ->  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) ) )
6867eximdv 1846 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u )  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) ) )
6959, 68mpd 15 . 2  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) )
7023, 69mpdan 702 1  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   (,)cioo 12175   ↾t crest 16081   topGenctg 16098   Topctop 20698   Clsdccld 20820    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stoweidlem53  40270
  Copyright terms: Public domain W3C validator