MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem3 Structured version   Visualization version   GIF version

Theorem chordthmlem3 24561
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2 + PM 2 . This follows from chordthmlem2 24560 and the Pythagorean theorem (pythag 24547) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem3.A (𝜑𝐴 ∈ ℂ)
chordthmlem3.B (𝜑𝐵 ∈ ℂ)
chordthmlem3.Q (𝜑𝑄 ∈ ℂ)
chordthmlem3.X (𝜑𝑋 ∈ ℝ)
chordthmlem3.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem3.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem3.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
Assertion
Ref Expression
chordthmlem3 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))

Proof of Theorem chordthmlem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmlem3.Q . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
2 chordthmlem3.M . . . . . . . . . 10 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
3 chordthmlem3.A . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4 chordthmlem3.B . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
53, 4addcld 10059 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
65halfcld 11277 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
72, 6eqeltrd 2701 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
81, 7subcld 10392 . . . . . . . 8 (𝜑 → (𝑄𝑀) ∈ ℂ)
98abscld 14175 . . . . . . 7 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℝ)
109recnd 10068 . . . . . 6 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℂ)
1110sqcld 13006 . . . . 5 (𝜑 → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1211adantr 481 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1312addid1d 10236 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + 0) = ((abs‘(𝑄𝑀))↑2))
14 chordthmlem3.P . . . . . . . . 9 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
15 chordthmlem3.X . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
1615recnd 10068 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
1716, 3mulcld 10060 . . . . . . . . . 10 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
18 1cnd 10056 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
1918, 16subcld 10392 . . . . . . . . . . 11 (𝜑 → (1 − 𝑋) ∈ ℂ)
2019, 4mulcld 10060 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2117, 20addcld 10059 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2214, 21eqeltrd 2701 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
2322adantr 481 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 ∈ ℂ)
24 simpr 477 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 = 𝑀)
2523, 24subeq0bd 10456 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑃𝑀) = 0)
2625abs00bd 14031 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑀)) = 0)
2726sq0id 12957 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑀))↑2) = 0)
2827oveq2d 6666 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (((abs‘(𝑄𝑀))↑2) + 0))
291adantr 481 . . . . . 6 ((𝜑𝑃 = 𝑀) → 𝑄 ∈ ℂ)
3029, 23abssubd 14192 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑃𝑄)))
3124oveq2d 6666 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑄𝑃) = (𝑄𝑀))
3231fveq2d 6195 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑄𝑀)))
3330, 32eqtr3d 2658 . . . 4 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑄𝑀)))
3433oveq1d 6665 . . 3 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑄𝑀))↑2))
3513, 28, 343eqtr4rd 2667 . 2 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
3622, 7subcld 10392 . . . . . . . 8 (𝜑 → (𝑃𝑀) ∈ ℂ)
3736abscld 14175 . . . . . . 7 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℝ)
3837recnd 10068 . . . . . 6 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℂ)
3938sqcld 13006 . . . . 5 (𝜑 → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4039adantr 481 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4140addid2d 10237 . . 3 ((𝜑𝑄 = 𝑀) → (0 + ((abs‘(𝑃𝑀))↑2)) = ((abs‘(𝑃𝑀))↑2))
421adantr 481 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 ∈ ℂ)
43 simpr 477 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 = 𝑀)
4442, 43subeq0bd 10456 . . . . . 6 ((𝜑𝑄 = 𝑀) → (𝑄𝑀) = 0)
4544abs00bd 14031 . . . . 5 ((𝜑𝑄 = 𝑀) → (abs‘(𝑄𝑀)) = 0)
4645sq0id 12957 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑄𝑀))↑2) = 0)
4746oveq1d 6665 . . 3 ((𝜑𝑄 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (0 + ((abs‘(𝑃𝑀))↑2)))
4843oveq2d 6666 . . . . 5 ((𝜑𝑄 = 𝑀) → (𝑃𝑄) = (𝑃𝑀))
4948fveq2d 6195 . . . 4 ((𝜑𝑄 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑀)))
5049oveq1d 6665 . . 3 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑃𝑀))↑2))
5141, 47, 503eqtr4rd 2667 . 2 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
5222adantr 481 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 ∈ ℂ)
531adantr 481 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄 ∈ ℂ)
547adantr 481 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 ∈ ℂ)
55 simprl 794 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃𝑀)
56 simprr 796 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄𝑀)
57 eqid 2622 . . . 4 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
583adantr 481 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐴 ∈ ℂ)
594adantr 481 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐵 ∈ ℂ)
6015adantr 481 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑋 ∈ ℝ)
612adantr 481 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 = ((𝐴 + 𝐵) / 2))
6214adantr 481 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
63 chordthmlem3.ABequidistQ . . . . 5 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6463adantr 481 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6557, 58, 59, 53, 60, 61, 62, 64, 55, 56chordthmlem2 24560 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
66 eqid 2622 . . . 4 (abs‘(𝑄𝑀)) = (abs‘(𝑄𝑀))
67 eqid 2622 . . . 4 (abs‘(𝑃𝑀)) = (abs‘(𝑃𝑀))
68 eqid 2622 . . . 4 (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑄))
69 eqid 2622 . . . 4 ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) = ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀))
7057, 66, 67, 68, 69pythag 24547 . . 3 (((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑃𝑀𝑄𝑀) ∧ ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)}) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7152, 53, 54, 55, 56, 65, 70syl321anc 1348 . 2 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7235, 51, 71pm2.61da2ne 2882 1 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {csn 4177  {cpr 4179  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  cexp 12860  cim 13838  abscabs 13974  πcpi 14797  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  chordthmlem5  24563
  Copyright terms: Public domain W3C validator