Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem5 Structured version   Visualization version   GIF version

Theorem cvmlift3lem5 31305
Description: Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
Assertion
Ref Expression
cvmlift3lem5 (𝜑 → (𝐹𝐻) = 𝐺)
Distinct variable groups:   𝑧,𝑓,𝑔,𝑥   𝑓,𝐽   𝑥,𝑔,𝐽   𝑓,𝐹,𝑔   𝑥,𝑧,𝐹   𝑓,𝐻,𝑔,𝑥,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝑓,𝐺,𝑔,𝑥,𝑧   𝐶,𝑓,𝑔,𝑥,𝑧   𝜑,𝑓,𝑥   𝑓,𝐾,𝑔,𝑥,𝑧   𝑃,𝑓,𝑔,𝑥,𝑧   𝑓,𝑂,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem5
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 (𝐻𝑦) = (𝐻𝑦)
2 cvmlift3.b . . . . . 6 𝐵 = 𝐶
3 cvmlift3.y . . . . . 6 𝑌 = 𝐾
4 cvmlift3.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmlift3.k . . . . . 6 (𝜑𝐾 ∈ SConn)
6 cvmlift3.l . . . . . 6 (𝜑𝐾 ∈ 𝑛-Locally PConn)
7 cvmlift3.o . . . . . 6 (𝜑𝑂𝑌)
8 cvmlift3.g . . . . . 6 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
9 cvmlift3.p . . . . . 6 (𝜑𝑃𝐵)
10 cvmlift3.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
11 cvmlift3.h . . . . . 6 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 31304 . . . . 5 ((𝜑𝑦𝑌) → ((𝐻𝑦) = (𝐻𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦))))
131, 12mpbii 223 . . . 4 ((𝜑𝑦𝑌) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
14 df-3an 1039 . . . . . 6 (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) ↔ (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
15 eqid 2622 . . . . . . . . . . . 12 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))
164ad3antrrr 766 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
17 simplr 792 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓 ∈ (II Cn 𝐾))
188ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐺 ∈ (𝐾 Cn 𝐽))
19 cnco 21070 . . . . . . . . . . . . 13 ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑓) ∈ (II Cn 𝐽))
2017, 18, 19syl2anc 693 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺𝑓) ∈ (II Cn 𝐽))
219ad3antrrr 766 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑃𝐵)
22 simprl 794 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘0) = 𝑂)
2322fveq2d 6195 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘0)) = (𝐺𝑂))
24 iiuni 22684 . . . . . . . . . . . . . . . 16 (0[,]1) = II
2524, 3cnf 21050 . . . . . . . . . . . . . . 15 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌)
2617, 25syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓:(0[,]1)⟶𝑌)
27 0elunit 12290 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
28 fvco3 6275 . . . . . . . . . . . . . 14 ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
2926, 27, 28sylancl 694 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
3010ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = (𝐺𝑂))
3123, 29, 303eqtr4rd 2667 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = ((𝐺𝑓)‘0))
322, 15, 16, 20, 21, 31cvmliftiota 31283 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3332simp2d 1074 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓))
3433fveq1d 6193 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = ((𝐺𝑓)‘1))
3532simp1d 1073 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3624, 2cnf 21050 . . . . . . . . . . 11 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3735, 36syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
38 1elunit 12291 . . . . . . . . . 10 1 ∈ (0[,]1)
39 fvco3 6275 . . . . . . . . . 10 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
4037, 38, 39sylancl 694 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
41 fvco3 6275 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶𝑌 ∧ 1 ∈ (0[,]1)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
4226, 38, 41sylancl 694 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
43 simprr 796 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘1) = 𝑦)
4443fveq2d 6195 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘1)) = (𝐺𝑦))
4542, 44eqtrd 2656 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺𝑦))
4634, 40, 453eqtr3d 2664 . . . . . . . 8 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦))
47 fveq2 6191 . . . . . . . . 9 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐹‘(𝐻𝑦)))
4847eqeq1d 2624 . . . . . . . 8 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → ((𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦) ↔ (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
4946, 48syl5ibcom 235 . . . . . . 7 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5049expimpd 629 . . . . . 6 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5114, 50syl5bi 232 . . . . 5 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5251rexlimdva 3031 . . . 4 ((𝜑𝑦𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5313, 52mpd 15 . . 3 ((𝜑𝑦𝑌) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦))
5453mpteq2dva 4744 . 2 (𝜑 → (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))) = (𝑦𝑌 ↦ (𝐺𝑦)))
552, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 31303 . . . 4 (𝜑𝐻:𝑌𝐵)
5655ffvelrnda 6359 . . 3 ((𝜑𝑦𝑌) → (𝐻𝑦) ∈ 𝐵)
5755feqmptd 6249 . . 3 (𝜑𝐻 = (𝑦𝑌 ↦ (𝐻𝑦)))
58 cvmcn 31244 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
59 eqid 2622 . . . . . 6 𝐽 = 𝐽
602, 59cnf 21050 . . . . 5 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
614, 58, 603syl 18 . . . 4 (𝜑𝐹:𝐵 𝐽)
6261feqmptd 6249 . . 3 (𝜑𝐹 = (𝑤𝐵 ↦ (𝐹𝑤)))
63 fveq2 6191 . . 3 (𝑤 = (𝐻𝑦) → (𝐹𝑤) = (𝐹‘(𝐻𝑦)))
6456, 57, 62, 63fmptco 6396 . 2 (𝜑 → (𝐹𝐻) = (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))))
653, 59cnf 21050 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
668, 65syl 17 . . 3 (𝜑𝐺:𝑌 𝐽)
6766feqmptd 6249 . 2 (𝜑𝐺 = (𝑦𝑌 ↦ (𝐺𝑦)))
6854, 64, 673eqtr4d 2666 1 (𝜑 → (𝐹𝐻) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913   cuni 4436  cmpt 4729  ccom 5118  wf 5884  cfv 5888  crio 6610  (class class class)co 6650  0cc0 9936  1c1 9937  [,]cicc 12178   Cn ccn 21028  𝑛-Locally cnlly 21268  IIcii 22678  PConncpconn 31201  SConncsconn 31202   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-cmp 21190  df-conn 21215  df-lly 21269  df-nlly 21270  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805  df-pconn 31203  df-sconn 31204  df-cvm 31238
This theorem is referenced by:  cvmlift3lem6  31306  cvmlift3lem7  31307  cvmlift3lem9  31309
  Copyright terms: Public domain W3C validator