| Step | Hyp | Ref
| Expression |
| 1 | | dvaddf.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℂ) |
| 3 | | dvaddf.df |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| 4 | | dvbsss 23666 |
. . . . . 6
⊢ dom
(𝑆 D 𝐹) ⊆ 𝑆 |
| 5 | 3, 4 | syl6eqssr 3656 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 6 | 5 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
| 7 | | dvaddf.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| 8 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
| 9 | | dvaddf.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 10 | 9 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ {ℝ, ℂ}) |
| 11 | 3 | eleq2d 2687 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥 ∈ 𝑋)) |
| 12 | 11 | biimpar 502 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
| 13 | | dvaddf.dg |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| 14 | 13 | eleq2d 2687 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥 ∈ 𝑋)) |
| 15 | 14 | biimpar 502 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺)) |
| 16 | 2, 6, 8, 6, 10, 12, 15 | dvmul 23704 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 17 | 16 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
| 18 | | dvfg 23670 |
. . . . 5
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D (𝐹 ∘𝑓
· 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ) |
| 19 | 9, 18 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ) |
| 20 | | recnprss 23668 |
. . . . . . . 8
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 21 | 9, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 22 | | mulcl 10020 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 23 | 22 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 24 | 9, 5 | ssexd 4805 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ V) |
| 25 | | inidm 3822 |
. . . . . . . 8
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
| 26 | 23, 1, 7, 24, 24, 25 | off 6912 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺):𝑋⟶ℂ) |
| 27 | 21, 26, 5 | dvbss 23665 |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D (𝐹 ∘𝑓 · 𝐺)) ⊆ 𝑋) |
| 28 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
| 29 | | fvexd 6203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V) |
| 30 | | fvexd 6203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ V) |
| 31 | | dvfg 23670 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 32 | 9, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 33 | 32 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 34 | | ffun 6048 |
. . . . . . . . . . . 12
⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) |
| 35 | | funfvbrb 6330 |
. . . . . . . . . . . 12
⊢ (Fun
(𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
| 36 | 33, 34, 35 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
| 37 | 12, 36 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)) |
| 38 | | dvfg 23670 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 39 | 9, 38 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 40 | 39 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 41 | | ffun 6048 |
. . . . . . . . . . . 12
⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) |
| 42 | | funfvbrb 6330 |
. . . . . . . . . . . 12
⊢ (Fun
(𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
| 43 | 40, 41, 42 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
| 44 | 15, 43 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)) |
| 45 | | eqid 2622 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 46 | 2, 6, 8, 6, 28, 29, 30, 37, 44, 45 | dvmulbr 23702 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D (𝐹 ∘𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 47 | | reldv 23634 |
. . . . . . . . . 10
⊢ Rel
(𝑆 D (𝐹 ∘𝑓 · 𝐺)) |
| 48 | 47 | releldmi 5362 |
. . . . . . . . 9
⊢ (𝑥(𝑆 D (𝐹 ∘𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
| 49 | 46, 48 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
| 50 | 49 | ex 450 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 → 𝑥 ∈ dom (𝑆 D (𝐹 ∘𝑓 · 𝐺)))) |
| 51 | 50 | ssrdv 3609 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
| 52 | 27, 51 | eqssd 3620 |
. . . . 5
⊢ (𝜑 → dom (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = 𝑋) |
| 53 | 52 | feq2d 6031 |
. . . 4
⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹 ∘𝑓 · 𝐺)):𝑋⟶ℂ)) |
| 54 | 19, 53 | mpbid 222 |
. . 3
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):𝑋⟶ℂ) |
| 55 | 54 | feqmptd 6249 |
. 2
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝑥))) |
| 56 | | ovexd 6680 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) ∈ V) |
| 57 | | ovexd 6680 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)) ∈ V) |
| 58 | | fvexd 6203 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ V) |
| 59 | 3 | feq2d 6031 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 60 | 32, 59 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 61 | 60 | feqmptd 6249 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 62 | 7 | feqmptd 6249 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 63 | 24, 29, 58, 61, 62 | offval2 6914 |
. . 3
⊢ (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · 𝐺) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)))) |
| 64 | | fvexd 6203 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ V) |
| 65 | 13 | feq2d 6031 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
| 66 | 39, 65 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
| 67 | 66 | feqmptd 6249 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
| 68 | 1 | feqmptd 6249 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 69 | 24, 30, 64, 67, 68 | offval2 6914 |
. . 3
⊢ (𝜑 → ((𝑆 D 𝐺) ∘𝑓 · 𝐹) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 70 | 24, 56, 57, 63, 69 | offval2 6914 |
. 2
⊢ (𝜑 → (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 +
((𝑆 D 𝐺) ∘𝑓 · 𝐹)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
| 71 | 17, 55, 70 | 3eqtr4d 2666 |
1
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 +
((𝑆 D 𝐺) ∘𝑓 · 𝐹))) |