MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog Structured version   Visualization version   GIF version

Theorem dvlog 24397
Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvlog (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvlog
StepHypRef Expression
1 eqid 2622 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 22587 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
31cnfldtopon 22586 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
43toponunii 20721 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
54restid 16094 . . . . . 6 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
62, 5ax-mp 5 . . . . 5 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
76eqcomi 2631 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8 cnelprrecn 10029 . . . . 5 ℂ ∈ {ℝ, ℂ}
98a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
10 logcn.d . . . . . 6 𝐷 = (ℂ ∖ (-∞(,]0))
1110logdmopn 24395 . . . . 5 𝐷 ∈ (TopOpen‘ℂfld)
1211a1i 11 . . . 4 (⊤ → 𝐷 ∈ (TopOpen‘ℂfld))
13 logf1o 24311 . . . . . . . . 9 log:(ℂ ∖ {0})–1-1-onto→ran log
14 f1of1 6136 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
1513, 14ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})–1-1→ran log
1610logdmss 24388 . . . . . . . 8 𝐷 ⊆ (ℂ ∖ {0})
17 f1ores 6151 . . . . . . . 8 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
1815, 16, 17mp2an 708 . . . . . . 7 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
19 f1ocnv 6149 . . . . . . 7 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) → (log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷)
2018, 19ax-mp 5 . . . . . 6 (log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷
21 df-log 24303 . . . . . . . . . . 11 log = (exp ↾ (ℑ “ (-π(,]π)))
2221reseq1i 5392 . . . . . . . . . 10 (log ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷)
2322cnveqi 5297 . . . . . . . . 9 (log ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷)
24 eff 14812 . . . . . . . . . . 11 exp:ℂ⟶ℂ
25 cnvimass 5485 . . . . . . . . . . . 12 (ℑ “ (-π(,]π)) ⊆ dom ℑ
26 imf 13853 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
2726fdmi 6052 . . . . . . . . . . . 12 dom ℑ = ℂ
2825, 27sseqtri 3637 . . . . . . . . . . 11 (ℑ “ (-π(,]π)) ⊆ ℂ
29 fssres 6070 . . . . . . . . . . 11 ((exp:ℂ⟶ℂ ∧ (ℑ “ (-π(,]π)) ⊆ ℂ) → (exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ)
3024, 28, 29mp2an 708 . . . . . . . . . 10 (exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ
31 ffun 6048 . . . . . . . . . 10 ((exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ → Fun (exp ↾ (ℑ “ (-π(,]π))))
32 funcnvres2 5969 . . . . . . . . . 10 (Fun (exp ↾ (ℑ “ (-π(,]π))) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)))
3330, 31, 32mp2b 10 . . . . . . . . 9 ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
34 cnvimass 5485 . . . . . . . . . . 11 ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ dom (exp ↾ (ℑ “ (-π(,]π)))
3530fdmi 6052 . . . . . . . . . . 11 dom (exp ↾ (ℑ “ (-π(,]π))) = (ℑ “ (-π(,]π))
3634, 35sseqtri 3637 . . . . . . . . . 10 ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ (ℑ “ (-π(,]π))
37 resabs1 5427 . . . . . . . . . 10 (((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ (ℑ “ (-π(,]π)) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)))
3836, 37ax-mp 5 . . . . . . . . 9 ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3923, 33, 383eqtri 2648 . . . . . . . 8 (log ↾ 𝐷) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
4021imaeq1i 5463 . . . . . . . . 9 (log “ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)
4140reseq2i 5393 . . . . . . . 8 (exp ↾ (log “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
4239, 41eqtr4i 2647 . . . . . . 7 (log ↾ 𝐷) = (exp ↾ (log “ 𝐷))
43 f1oeq1 6127 . . . . . . 7 ((log ↾ 𝐷) = (exp ↾ (log “ 𝐷)) → ((log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷 ↔ (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷))
4442, 43ax-mp 5 . . . . . 6 ((log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷 ↔ (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷)
4520, 44mpbi 220 . . . . 5 (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷
4645a1i 11 . . . 4 (⊤ → (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷)
4742cnveqi 5297 . . . . . 6 (log ↾ 𝐷) = (exp ↾ (log “ 𝐷))
48 relres 5426 . . . . . . 7 Rel (log ↾ 𝐷)
49 dfrel2 5583 . . . . . . 7 (Rel (log ↾ 𝐷) ↔ (log ↾ 𝐷) = (log ↾ 𝐷))
5048, 49mpbi 220 . . . . . 6 (log ↾ 𝐷) = (log ↾ 𝐷)
5147, 50eqtr3i 2646 . . . . 5 (exp ↾ (log “ 𝐷)) = (log ↾ 𝐷)
52 f1of 6137 . . . . . . 7 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) → (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
5318, 52mp1i 13 . . . . . 6 (⊤ → (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
54 imassrn 5477 . . . . . . . 8 (log “ 𝐷) ⊆ ran log
55 logrncn 24309 . . . . . . . . 9 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
5655ssriv 3607 . . . . . . . 8 ran log ⊆ ℂ
5754, 56sstri 3612 . . . . . . 7 (log “ 𝐷) ⊆ ℂ
5810logcn 24393 . . . . . . 7 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
59 cncffvrn 22701 . . . . . . 7 (((log “ 𝐷) ⊆ ℂ ∧ (log ↾ 𝐷) ∈ (𝐷cn→ℂ)) → ((log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)) ↔ (log ↾ 𝐷):𝐷⟶(log “ 𝐷)))
6057, 58, 59mp2an 708 . . . . . 6 ((log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)) ↔ (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
6153, 60sylibr 224 . . . . 5 (⊤ → (log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)))
6251, 61syl5eqel 2705 . . . 4 (⊤ → (exp ↾ (log “ 𝐷)) ∈ (𝐷cn→(log “ 𝐷)))
63 ssid 3624 . . . . . . . . 9 ℂ ⊆ ℂ
641, 7dvres 23675 . . . . . . . . 9 (((ℂ ⊆ ℂ ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ (log “ 𝐷) ⊆ ℂ)) → (ℂ D (exp ↾ (log “ 𝐷))) = ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))))
6563, 24, 63, 57, 64mp4an 709 . . . . . . . 8 (ℂ D (exp ↾ (log “ 𝐷))) = ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)))
66 dvef 23743 . . . . . . . . 9 (ℂ D exp) = exp
6710dvloglem 24394 . . . . . . . . . 10 (log “ 𝐷) ∈ (TopOpen‘ℂfld)
68 isopn3i 20886 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (log “ 𝐷) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)) = (log “ 𝐷))
692, 67, 68mp2an 708 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)) = (log “ 𝐷)
7066, 69reseq12i 5394 . . . . . . . 8 ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))) = (exp ↾ (log “ 𝐷))
7165, 70eqtri 2644 . . . . . . 7 (ℂ D (exp ↾ (log “ 𝐷))) = (exp ↾ (log “ 𝐷))
7271dmeqi 5325 . . . . . 6 dom (ℂ D (exp ↾ (log “ 𝐷))) = dom (exp ↾ (log “ 𝐷))
73 dmres 5419 . . . . . 6 dom (exp ↾ (log “ 𝐷)) = ((log “ 𝐷) ∩ dom exp)
7424fdmi 6052 . . . . . . . 8 dom exp = ℂ
7557, 74sseqtr4i 3638 . . . . . . 7 (log “ 𝐷) ⊆ dom exp
76 df-ss 3588 . . . . . . 7 ((log “ 𝐷) ⊆ dom exp ↔ ((log “ 𝐷) ∩ dom exp) = (log “ 𝐷))
7775, 76mpbi 220 . . . . . 6 ((log “ 𝐷) ∩ dom exp) = (log “ 𝐷)
7872, 73, 773eqtri 2648 . . . . 5 dom (ℂ D (exp ↾ (log “ 𝐷))) = (log “ 𝐷)
7978a1i 11 . . . 4 (⊤ → dom (ℂ D (exp ↾ (log “ 𝐷))) = (log “ 𝐷))
80 neirr 2803 . . . . . 6 ¬ 0 ≠ 0
81 resss 5422 . . . . . . . . . . . . 13 ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))) ⊆ (ℂ D exp)
8265, 81eqsstri 3635 . . . . . . . . . . . 12 (ℂ D (exp ↾ (log “ 𝐷))) ⊆ (ℂ D exp)
8382, 66sseqtri 3637 . . . . . . . . . . 11 (ℂ D (exp ↾ (log “ 𝐷))) ⊆ exp
84 rnss 5354 . . . . . . . . . . 11 ((ℂ D (exp ↾ (log “ 𝐷))) ⊆ exp → ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ ran exp)
8583, 84ax-mp 5 . . . . . . . . . 10 ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ ran exp
86 eff2 14829 . . . . . . . . . . 11 exp:ℂ⟶(ℂ ∖ {0})
87 frn 6053 . . . . . . . . . . 11 (exp:ℂ⟶(ℂ ∖ {0}) → ran exp ⊆ (ℂ ∖ {0}))
8886, 87ax-mp 5 . . . . . . . . . 10 ran exp ⊆ (ℂ ∖ {0})
8985, 88sstri 3612 . . . . . . . . 9 ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ (ℂ ∖ {0})
9089sseli 3599 . . . . . . . 8 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → 0 ∈ (ℂ ∖ {0}))
91 eldifsn 4317 . . . . . . . 8 (0 ∈ (ℂ ∖ {0}) ↔ (0 ∈ ℂ ∧ 0 ≠ 0))
9290, 91sylib 208 . . . . . . 7 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → (0 ∈ ℂ ∧ 0 ≠ 0))
9392simprd 479 . . . . . 6 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → 0 ≠ 0)
9480, 93mto 188 . . . . 5 ¬ 0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷)))
9594a1i 11 . . . 4 (⊤ → ¬ 0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))))
961, 7, 9, 12, 46, 62, 79, 95dvcnv 23740 . . 3 (⊤ → (ℂ D (exp ↾ (log “ 𝐷))) = (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)))))
9796trud 1493 . 2 (ℂ D (exp ↾ (log “ 𝐷))) = (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥))))
9851oveq2i 6661 . 2 (ℂ D (exp ↾ (log “ 𝐷))) = (ℂ D (log ↾ 𝐷))
9971fveq1i 6192 . . . . 5 ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)) = ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥))
100 f1ocnvfv2 6533 . . . . . 6 (((exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷𝑥𝐷) → ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
10145, 100mpan 706 . . . . 5 (𝑥𝐷 → ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
10299, 101syl5eq 2668 . . . 4 (𝑥𝐷 → ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
103102oveq2d 6666 . . 3 (𝑥𝐷 → (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥))) = (1 / 𝑥))
104103mpteq2ia 4740 . 2 (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
10597, 98, 1043eqtr3i 2652 1 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1483  wtru 1484  wcel 1990  wne 2794  cdif 3571  cin 3573  wss 3574  {csn 4177  {cpr 4179  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Rel wrel 5119  Fun wfun 5882  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  -∞cmnf 10072  -cneg 10267   / cdiv 10684  (,]cioc 12176  cim 13838  expce 14792  πcpi 14797  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  intcnt 20821  cnccncf 22679   D cdv 23627  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  dvlog2  24399  dvcncxp1  24484  dvatan  24662  lgamgulmlem2  24756  dvasin  33496
  Copyright terms: Public domain W3C validator