Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem115 Structured version   Visualization version   GIF version

Theorem fourierdlem115 40438
Description: Fourier serier convergence, for piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem115.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem115.t 𝑇 = (2 · π)
fourierdlem115.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem115.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourierdlem115.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourierdlem115.dvcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourierdlem115.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourierdlem115.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourierdlem115.x (𝜑𝑋 ∈ ℝ)
fourierdlem115.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem115.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem115.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem115.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem115.s 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
Assertion
Ref Expression
fourierdlem115 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹,𝑛,𝑥   𝑘,𝐺,𝑥   𝑘,𝐿   𝑅,𝑘   𝑇,𝑘,𝑥   𝑘,𝑋,𝑛,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑘,𝑛)   𝑇(𝑛)   𝐺(𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem fourierdlem115
Dummy variables 𝑧 𝑓 𝑔 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem115.f . . . 4 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem115.t . . . 4 𝑇 = (2 · π)
3 fourierdlem115.per . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourierdlem115.g . . . 4 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
5 fourierdlem115.dmdv . . . 4 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
6 fourierdlem115.dvcn . . . 4 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
7 fourierdlem115.rlim . . . 4 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
8 fourierdlem115.llim . . . 4 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
9 fourierdlem115.x . . . 4 (𝜑𝑋 ∈ ℝ)
10 fourierdlem115.l . . . 4 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
11 fourierdlem115.r . . . 4 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
12 fourierdlem115.a . . . . 5 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
13 oveq1 6657 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛 · 𝑥) = (𝑘 · 𝑥))
1413fveq2d 6195 . . . . . . . . . 10 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑘 · 𝑥)))
1514oveq2d 6666 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))))
1615adantr 481 . . . . . . . 8 ((𝑛 = 𝑘𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑘 · 𝑥))))
1716itgeq2dv 23548 . . . . . . 7 (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥)
1817oveq1d 6665 . . . . . 6 (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
1918cbvmptv 4750 . . . . 5 (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
2012, 19eqtri 2644 . . . 4 𝐴 = (𝑘 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑘 · 𝑥))) d𝑥 / π))
21 fourierdlem115.b . . . . 5 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
2213fveq2d 6195 . . . . . . . . . 10 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑘 · 𝑥)))
2322oveq2d 6666 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))))
2423adantr 481 . . . . . . . 8 ((𝑛 = 𝑘𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑘 · 𝑥))))
2524itgeq2dv 23548 . . . . . . 7 (𝑛 = 𝑘 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥)
2625oveq1d 6665 . . . . . 6 (𝑛 = 𝑘 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
2726cbvmptv 4750 . . . . 5 (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) = (𝑘 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
2821, 27eqtri 2644 . . . 4 𝐵 = (𝑘 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑘 · 𝑥))) d𝑥 / π))
29 fourierdlem115.s . . . 4 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
30 eqid 2622 . . . 4 (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑𝑚 (0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤𝑧) < (𝑤‘(𝑧 + 1)))}) = (𝑘 ∈ ℕ ↦ {𝑤 ∈ (ℝ ↑𝑚 (0...𝑘)) ∣ (((𝑤‘0) = -π ∧ (𝑤𝑘) = π) ∧ ∀𝑧 ∈ (0..^𝑘)(𝑤𝑧) < (𝑤‘(𝑧 + 1)))})
31 id 22 . . . . . 6 (𝑦 = 𝑥𝑦 = 𝑥)
32 oveq2 6658 . . . . . . . . 9 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
3332oveq1d 6665 . . . . . . . 8 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
3433fveq2d 6195 . . . . . . 7 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
3534oveq1d 6665 . . . . . 6 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
3631, 35oveq12d 6668 . . . . 5 (𝑦 = 𝑥 → (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
3736cbvmptv 4750 . . . 4 (𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
38 eqid 2622 . . . 4 ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) = ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))
39 eqid 2622 . . . 4 ((#‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1) = ((#‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)
40 isoeq1 6567 . . . . 5 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((#‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) ↔ 𝑓 Isom < , < ((0...((#‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))))
4140cbviotav 5857 . . . 4 (℩𝑔𝑔 Isom < , < ((0...((#‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)))) = (℩𝑓𝑓 Isom < , < ((0...((#‘({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))) − 1)), ({-π, π, ((𝑦 ∈ ℝ ↦ (𝑦 + ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)))‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 28, 29, 30, 37, 38, 39, 41fourierdlem114 40437 . . 3 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
4342simpld 475 . 2 (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))
44 nfcv 2764 . . . . 5 𝑘(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))
45 nfmpt1 4747 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
4612, 45nfcxfr 2762 . . . . . . . 8 𝑛𝐴
47 nfcv 2764 . . . . . . . 8 𝑛𝑘
4846, 47nffv 6198 . . . . . . 7 𝑛(𝐴𝑘)
49 nfcv 2764 . . . . . . 7 𝑛 ·
50 nfcv 2764 . . . . . . 7 𝑛(cos‘(𝑘 · 𝑋))
5148, 49, 50nfov 6676 . . . . . 6 𝑛((𝐴𝑘) · (cos‘(𝑘 · 𝑋)))
52 nfcv 2764 . . . . . 6 𝑛 +
53 nfmpt1 4747 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
5421, 53nfcxfr 2762 . . . . . . . 8 𝑛𝐵
5554, 47nffv 6198 . . . . . . 7 𝑛(𝐵𝑘)
56 nfcv 2764 . . . . . . 7 𝑛(sin‘(𝑘 · 𝑋))
5755, 49, 56nfov 6676 . . . . . 6 𝑛((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))
5851, 52, 57nfov 6676 . . . . 5 𝑛(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
59 fveq2 6191 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
60 oveq1 6657 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
6160fveq2d 6195 . . . . . . 7 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
6259, 61oveq12d 6668 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
63 fveq2 6191 . . . . . . 7 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
6460fveq2d 6195 . . . . . . 7 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
6563, 64oveq12d 6668 . . . . . 6 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
6662, 65oveq12d 6668 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
6744, 58, 66cbvsumi 14427 . . . 4 Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
6867oveq2i 6661 . . 3 (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
6942simprd 479 . . 3 (𝜑 → (((𝐴‘0) / 2) + Σ𝑘 ∈ ℕ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
7068, 69syl5eq 2668 . 2 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
7143, 70jca 554 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  cdif 3571  cun 3572  c0 3915  {ctp 4181   class class class wbr 4653  cmpt 4729  dom cdm 5114  cres 5116  cio 5849  wf 5884  cfv 5888   Isom wiso 5889  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  -∞cmnf 10072   < clt 10074  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  (,)cioo 12175  (,]cioc 12176  [,)cico 12177  [,]cicc 12178  ...cfz 12326  ..^cfzo 12465  cfl 12591  seqcseq 12801  #chash 13117  cli 14215  Σcsu 14416  sincsin 14794  cosccos 14795  πcpi 14797  cnccncf 22679  citg 23387   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierd  40439  fourierclimd  40440
  Copyright terms: Public domain W3C validator