MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htth Structured version   Visualization version   GIF version

Theorem htth 27775
Description: Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
Assertion
Ref Expression
htth ((𝑈 ∈ CHilOLD𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵)
Distinct variable groups:   𝑥,𝑦,𝑇   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem htth
Dummy variables 𝑤 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htth.3 . . . . . . 7 𝐿 = (𝑈 LnOp 𝑈)
2 oveq12 6659 . . . . . . . 8 ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∧ 𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
32anidms 677 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
41, 3syl5eq 2668 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐿 = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
54eleq2d 2687 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐿𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
6 htth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
7 fveq2 6191 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
86, 7syl5eq 2668 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
9 htth.2 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
10 fveq2 6191 . . . . . . . . . 10 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (·𝑖OLD𝑈) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
119, 10syl5eq 2668 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1211oveqd 6667 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑥𝑃(𝑇𝑦)) = (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)))
1311oveqd 6667 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝑥)𝑃𝑦) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
1412, 13eqeq12d 2637 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
158, 14raleqbidv 3152 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ ∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
168, 15raleqbidv 3152 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
175, 16anbi12d 747 . . . 4 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) ↔ (𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))))
18 htth.4 . . . . . 6 𝐵 = (𝑈 BLnOp 𝑈)
19 oveq12 6659 . . . . . . 7 ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∧ 𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2019anidms 677 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2118, 20syl5eq 2668 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐵 = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2221eleq2d 2687 . . . 4 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐵𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
2317, 22imbi12d 334 . . 3 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵) ↔ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
24 eqid 2622 . . . 4 (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
25 eqid 2622 . . . 4 (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2622 . . . 4 (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
27 eqid 2622 . . . 4 (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
28 eqid 2622 . . . 4 (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
29 eqid 2622 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3029cnchl 27772 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CHilOLD
3130elimel 4150 . . . 4 if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CHilOLD
32 simpl 473 . . . 4 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
33 simpr 477 . . . . 5 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
34 oveq1 6657 . . . . . . 7 (𝑥 = 𝑢 → (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)))
35 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑢 → (𝑇𝑥) = (𝑇𝑢))
3635oveq1d 6665 . . . . . . 7 (𝑥 = 𝑢 → ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
3734, 36eqeq12d 2637 . . . . . 6 (𝑥 = 𝑢 → ((𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
38 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑣 → (𝑇𝑦) = (𝑇𝑣))
3938oveq2d 6666 . . . . . . 7 (𝑦 = 𝑣 → (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)))
40 oveq2 6658 . . . . . . 7 (𝑦 = 𝑣 → ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
4139, 40eqeq12d 2637 . . . . . 6 (𝑦 = 𝑣 → ((𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣)))
4237, 41cbvral2v 3179 . . . . 5 (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑣 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
4333, 42sylib 208 . . . 4 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑣 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
44 oveq1 6657 . . . . . . 7 (𝑦 = 𝑤 → (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))
4544cbvmptv 4750 . . . . . 6 (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))
46 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
4746oveq2d 6666 . . . . . . 7 (𝑥 = 𝑧 → (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧)))
4847mpteq2dv 4745 . . . . . 6 (𝑥 = 𝑧 → (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
4945, 48syl5eq 2668 . . . . 5 (𝑥 = 𝑧 → (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
5049cbvmptv 4750 . . . 4 (𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) = (𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
51 fveq2 6191 . . . . . . 7 (𝑥 = 𝑧 → ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) = ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧))
5251breq1d 4663 . . . . . 6 (𝑥 = 𝑧 → (((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1 ↔ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1))
5352cbvrabv 3199 . . . . 5 {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1} = {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1}
5453imaeq2i 5464 . . . 4 ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) “ {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1}) = ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) “ {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1})
5524, 25, 26, 27, 28, 31, 29, 32, 43, 50, 54htthlem 27774 . . 3 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
5623, 55dedth 4139 . 2 (𝑈 ∈ CHilOLD → ((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵))
57563impib 1262 1 ((𝑈 ∈ CHilOLD𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  ifcif 4086  cop 4183   class class class wbr 4653  cmpt 4729  cima 5117  cfv 5888  (class class class)co 6650  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  abscabs 13974  BaseSetcba 27441  normCVcnmcv 27445  ·𝑖OLDcdip 27555   LnOp clno 27595   BLnOp cblo 27597  CHilOLDchlo 27741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-dc 9268  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-fcls 21745  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-lno 27599  df-nmoo 27600  df-blo 27601  df-0o 27602  df-ph 27668  df-cbn 27719  df-hlo 27742
This theorem is referenced by:  hmopbdoptHIL  28847
  Copyright terms: Public domain W3C validator