MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logimul Structured version   Visualization version   GIF version

Theorem logimul 24360
Description: Multiplying a number by i increases the logarithm of the number by iπ / 2. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
logimul ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))

Proof of Theorem logimul
StepHypRef Expression
1 logcl 24315 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
213adant3 1081 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
3 ax-icn 9995 . . . . . 6 i ∈ ℂ
4 halfpire 24216 . . . . . . 7 (π / 2) ∈ ℝ
54recni 10052 . . . . . 6 (π / 2) ∈ ℂ
63, 5mulcli 10045 . . . . 5 (i · (π / 2)) ∈ ℂ
7 efadd 14824 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
82, 6, 7sylancl 694 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))))
9 eflog 24323 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1093adant3 1081 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
11 efhalfpi 24223 . . . . . 6 (exp‘(i · (π / 2))) = i
1211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(i · (π / 2))) = i)
1310, 12oveq12d 6668 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((exp‘(log‘𝐴)) · (exp‘(i · (π / 2)))) = (𝐴 · i))
14 simp1 1061 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
15 mulcom 10022 . . . . 5 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 · i) = (i · 𝐴))
1614, 3, 15sylancl 694 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (𝐴 · i) = (i · 𝐴))
178, 13, 163eqtrd 2660 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘((log‘𝐴) + (i · (π / 2)))) = (i · 𝐴))
1817fveq2d 6195 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = (log‘(i · 𝐴)))
19 addcl 10018 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
202, 6, 19sylancl 694 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ℂ)
21 pire 24210 . . . . . . . 8 π ∈ ℝ
2221renegcli 10342 . . . . . . 7 -π ∈ ℝ
2322a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π ∈ ℝ)
242imcld 13935 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
25 readdcl 10019 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
2624, 4, 25sylancl 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ∈ ℝ)
27 logimcl 24316 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
28273adant3 1081 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
2928simpld 475 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
30 pirp 24213 . . . . . . . 8 π ∈ ℝ+
31 rphalfcl 11858 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
3230, 31ax-mp 5 . . . . . . 7 (π / 2) ∈ ℝ+
33 ltaddrp 11867 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ+) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3424, 32, 33sylancl 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < ((ℑ‘(log‘𝐴)) + (π / 2)))
3523, 24, 26, 29, 34lttrd 10198 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + (π / 2)))
36 imadd 13874 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
372, 6, 36sylancl 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))))
38 reim 13849 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
395, 38ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
40 rere 13862 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
414, 40ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
4239, 41eqtr3i 2646 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
4342oveq2i 6661 . . . . . 6 ((ℑ‘(log‘𝐴)) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2))
4437, 43syl6eq 2672 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) = ((ℑ‘(log‘𝐴)) + (π / 2)))
4535, 44breqtrrd 4681 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))))
46 argrege0 24357 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))
474renegcli 10342 . . . . . . . . . 10 -(π / 2) ∈ ℝ
4847, 4elicc2i 12239 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
4948simp3bi 1078 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5046, 49syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
5121recni 10052 . . . . . . . 8 π ∈ ℂ
52 pidiv2halves 24219 . . . . . . . 8 ((π / 2) + (π / 2)) = π
5351, 5, 5, 52subaddrii 10370 . . . . . . 7 (π − (π / 2)) = (π / 2)
5450, 53syl6breqr 4695 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π − (π / 2)))
554a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (π / 2) ∈ ℝ)
5621a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → π ∈ ℝ)
57 leaddsub 10504 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5824, 55, 56, 57syl3anc 1326 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π ↔ (ℑ‘(log‘𝐴)) ≤ (π − (π / 2))))
5954, 58mpbird 247 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((ℑ‘(log‘𝐴)) + (π / 2)) ≤ π)
6044, 59eqbrtrd 4675 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π)
61 ellogrn 24306 . . . 4 (((log‘𝐴) + (i · (π / 2))) ∈ ran log ↔ (((log‘𝐴) + (i · (π / 2))) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) + (i · (π / 2)))) ∧ (ℑ‘((log‘𝐴) + (i · (π / 2)))) ≤ π))
6220, 45, 60, 61syl3anbrc 1246 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘𝐴) + (i · (π / 2))) ∈ ran log)
63 logef 24328 . . 3 (((log‘𝐴) + (i · (π / 2))) ∈ ran log → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6462, 63syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(exp‘((log‘𝐴) + (i · (π / 2))))) = ((log‘𝐴) + (i · (π / 2))))
6518, 64eqtr3d 2658 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘(i · 𝐴)) = ((log‘𝐴) + (i · (π / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  ici 9938   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  +crp 11832  [,]cicc 12178  cre 13837  cim 13838  expce 14792  πcpi 14797  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  atanlogsublem  24642
  Copyright terms: Public domain W3C validator