Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnprodlem3 Structured version   Visualization version   GIF version

Theorem dvnprodlem3 40163
Description: The multinomial formula for the 𝑘-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnprodlem3.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnprodlem3.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnprodlem3.t (𝜑𝑇 ∈ Fin)
dvnprodlem3.h ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
dvnprodlem3.n (𝜑𝑁 ∈ ℕ0)
dvnprodlem3.dvnh ((𝜑𝑡𝑇𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑗):𝑋⟶ℂ)
dvnprodlem3.f 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
dvnprodlem3.d 𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}))
dvnprodlem3.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
Assertion
Ref Expression
dvnprodlem3 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Distinct variable groups:   𝐶,𝑐   𝐷,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝐹,𝑠   𝐻,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝑁,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝑆,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝑇,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝑋,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝜑,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑡,𝑗,𝑛,𝑠)   𝐹(𝑥,𝑡,𝑗,𝑛,𝑐)

Proof of Theorem dvnprodlem3
Dummy variables 𝑘 𝑑 𝑙 𝑟 𝑧 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 14639 . . . . . . . . 9 (𝑠 = ∅ → ∏𝑡𝑠 ((𝐻𝑡)‘𝑥) = ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥))
21mpteq2dv 4745 . . . . . . . 8 (𝑠 = ∅ → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))
32oveq2d 6666 . . . . . . 7 (𝑠 = ∅ → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥))))
43fveq1d 6193 . . . . . 6 (𝑠 = ∅ → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘))
5 fveq2 6191 . . . . . . . . . 10 (𝑠 = ∅ → (𝐷𝑠) = (𝐷‘∅))
65fveq1d 6193 . . . . . . . . 9 (𝑠 = ∅ → ((𝐷𝑠)‘𝑘) = ((𝐷‘∅)‘𝑘))
76sumeq1d 14431 . . . . . . . 8 (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
8 prodeq1 14639 . . . . . . . . . . 11 (𝑠 = ∅ → ∏𝑡𝑠 (!‘(𝑐𝑡)) = ∏𝑡 ∈ ∅ (!‘(𝑐𝑡)))
98oveq2d 6666 . . . . . . . . . 10 (𝑠 = ∅ → ((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))))
10 prodeq1 14639 . . . . . . . . . 10 (𝑠 = ∅ → ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
119, 10oveq12d 6668 . . . . . . . . 9 (𝑠 = ∅ → (((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
1211sumeq2ad 14434 . . . . . . . 8 (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
137, 12eqtrd 2656 . . . . . . 7 (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
1413mpteq2dv 4745 . . . . . 6 (𝑠 = ∅ → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
154, 14eqeq12d 2637 . . . . 5 (𝑠 = ∅ → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
1615ralbidv 2986 . . . 4 (𝑠 = ∅ → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
17 prodeq1 14639 . . . . . . . . 9 (𝑠 = 𝑟 → ∏𝑡𝑠 ((𝐻𝑡)‘𝑥) = ∏𝑡𝑟 ((𝐻𝑡)‘𝑥))
1817mpteq2dv 4745 . . . . . . . 8 (𝑠 = 𝑟 → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))
1918oveq2d 6666 . . . . . . 7 (𝑠 = 𝑟 → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥))))
2019fveq1d 6193 . . . . . 6 (𝑠 = 𝑟 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘))
21 fveq2 6191 . . . . . . . . . 10 (𝑠 = 𝑟 → (𝐷𝑠) = (𝐷𝑟))
2221fveq1d 6193 . . . . . . . . 9 (𝑠 = 𝑟 → ((𝐷𝑠)‘𝑘) = ((𝐷𝑟)‘𝑘))
2322sumeq1d 14431 . . . . . . . 8 (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
24 prodeq1 14639 . . . . . . . . . . 11 (𝑠 = 𝑟 → ∏𝑡𝑠 (!‘(𝑐𝑡)) = ∏𝑡𝑟 (!‘(𝑐𝑡)))
2524oveq2d 6666 . . . . . . . . . 10 (𝑠 = 𝑟 → ((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))))
26 prodeq1 14639 . . . . . . . . . 10 (𝑠 = 𝑟 → ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
2725, 26oveq12d 6668 . . . . . . . . 9 (𝑠 = 𝑟 → (((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
2827sumeq2ad 14434 . . . . . . . 8 (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
2923, 28eqtrd 2656 . . . . . . 7 (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
3029mpteq2dv 4745 . . . . . 6 (𝑠 = 𝑟 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
3120, 30eqeq12d 2637 . . . . 5 (𝑠 = 𝑟 → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
3231ralbidv 2986 . . . 4 (𝑠 = 𝑟 → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
33 prodeq1 14639 . . . . . . . . 9 (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡𝑠 ((𝐻𝑡)‘𝑥) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥))
3433mpteq2dv 4745 . . . . . . . 8 (𝑠 = (𝑟 ∪ {𝑧}) → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))
3534oveq2d 6666 . . . . . . 7 (𝑠 = (𝑟 ∪ {𝑧}) → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥))))
3635fveq1d 6193 . . . . . 6 (𝑠 = (𝑟 ∪ {𝑧}) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘))
37 fveq2 6191 . . . . . . . . . 10 (𝑠 = (𝑟 ∪ {𝑧}) → (𝐷𝑠) = (𝐷‘(𝑟 ∪ {𝑧})))
3837fveq1d 6193 . . . . . . . . 9 (𝑠 = (𝑟 ∪ {𝑧}) → ((𝐷𝑠)‘𝑘) = ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘))
3938sumeq1d 14431 . . . . . . . 8 (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
40 prodeq1 14639 . . . . . . . . . . 11 (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡𝑠 (!‘(𝑐𝑡)) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡)))
4140oveq2d 6666 . . . . . . . . . 10 (𝑠 = (𝑟 ∪ {𝑧}) → ((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))))
42 prodeq1 14639 . . . . . . . . . 10 (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
4341, 42oveq12d 6668 . . . . . . . . 9 (𝑠 = (𝑟 ∪ {𝑧}) → (((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
4443sumeq2ad 14434 . . . . . . . 8 (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
4539, 44eqtrd 2656 . . . . . . 7 (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
4645mpteq2dv 4745 . . . . . 6 (𝑠 = (𝑟 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
4736, 46eqeq12d 2637 . . . . 5 (𝑠 = (𝑟 ∪ {𝑧}) → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
4847ralbidv 2986 . . . 4 (𝑠 = (𝑟 ∪ {𝑧}) → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
49 prodeq1 14639 . . . . . . . . . 10 (𝑠 = 𝑇 → ∏𝑡𝑠 ((𝐻𝑡)‘𝑥) = ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
5049mpteq2dv 4745 . . . . . . . . 9 (𝑠 = 𝑇 → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥)))
51 dvnprodlem3.f . . . . . . . . . . 11 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
5251a1i 11 . . . . . . . . . 10 (𝑠 = 𝑇𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥)))
5352eqcomd 2628 . . . . . . . . 9 (𝑠 = 𝑇 → (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥)) = 𝐹)
5450, 53eqtrd 2656 . . . . . . . 8 (𝑠 = 𝑇 → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = 𝐹)
5554oveq2d 6666 . . . . . . 7 (𝑠 = 𝑇 → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 𝐹))
5655fveq1d 6193 . . . . . 6 (𝑠 = 𝑇 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘))
57 fveq2 6191 . . . . . . . . . 10 (𝑠 = 𝑇 → (𝐷𝑠) = (𝐷𝑇))
5857fveq1d 6193 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝐷𝑠)‘𝑘) = ((𝐷𝑇)‘𝑘))
5958sumeq1d 14431 . . . . . . . 8 (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
60 prodeq1 14639 . . . . . . . . . . 11 (𝑠 = 𝑇 → ∏𝑡𝑠 (!‘(𝑐𝑡)) = ∏𝑡𝑇 (!‘(𝑐𝑡)))
6160oveq2d 6666 . . . . . . . . . 10 (𝑠 = 𝑇 → ((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))))
62 prodeq1 14639 . . . . . . . . . 10 (𝑠 = 𝑇 → ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
6361, 62oveq12d 6668 . . . . . . . . 9 (𝑠 = 𝑇 → (((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
6463sumeq2ad 14434 . . . . . . . 8 (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
6559, 64eqtrd 2656 . . . . . . 7 (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
6665mpteq2dv 4745 . . . . . 6 (𝑠 = 𝑇 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
6756, 66eqeq12d 2637 . . . . 5 (𝑠 = 𝑇 → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
6867ralbidv 2986 . . . 4 (𝑠 = 𝑇 → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
69 prod0 14673 . . . . . . . . . . . . 13 𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥) = 1
7069mpteq2i 4741 . . . . . . . . . . . 12 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ 1)
7170oveq2i 6661 . . . . . . . . . . 11 (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ 1))
7271a1i 11 . . . . . . . . . 10 (𝑘 = 0 → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ 1)))
73 id 22 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 = 0)
7472, 73fveq12d 6197 . . . . . . . . 9 (𝑘 = 0 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0))
7574adantl 482 . . . . . . . 8 ((𝜑𝑘 = 0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0))
76 dvnprodlem3.s . . . . . . . . . . 11 (𝜑𝑆 ∈ {ℝ, ℂ})
77 recnprss 23668 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
7876, 77syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
79 1cnd 10056 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
80 eqid 2622 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ 1) = (𝑥𝑋 ↦ 1)
8179, 80fmptd 6385 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋 ↦ 1):𝑋⟶ℂ)
82 1re 10039 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
8382rgenw 2924 . . . . . . . . . . . . . . . 16 𝑥𝑋 1 ∈ ℝ
84 dmmptg 5632 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 1 ∈ ℝ → dom (𝑥𝑋 ↦ 1) = 𝑋)
8583, 84ax-mp 5 . . . . . . . . . . . . . . 15 dom (𝑥𝑋 ↦ 1) = 𝑋
8685a1i 11 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑥𝑋 ↦ 1) = 𝑋)
8786feq2d 6031 . . . . . . . . . . . . 13 (𝜑 → ((𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ ↔ (𝑥𝑋 ↦ 1):𝑋⟶ℂ))
8881, 87mpbird 247 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ)
89 restsspw 16092 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
90 dvnprodlem3.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
9189, 90sseldi 3601 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ 𝒫 𝑆)
92 elpwi 4168 . . . . . . . . . . . . . 14 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
9391, 92syl 17 . . . . . . . . . . . . 13 (𝜑𝑋𝑆)
9486, 93eqsstrd 3639 . . . . . . . . . . . 12 (𝜑 → dom (𝑥𝑋 ↦ 1) ⊆ 𝑆)
9588, 94jca 554 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥𝑋 ↦ 1) ⊆ 𝑆))
96 cnex 10017 . . . . . . . . . . . . 13 ℂ ∈ V
9796a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
98 elpm2g 7874 . . . . . . . . . . . 12 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → ((𝑥𝑋 ↦ 1) ∈ (ℂ ↑pm 𝑆) ↔ ((𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥𝑋 ↦ 1) ⊆ 𝑆)))
9997, 76, 98syl2anc 693 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑋 ↦ 1) ∈ (ℂ ↑pm 𝑆) ↔ ((𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥𝑋 ↦ 1) ⊆ 𝑆)))
10095, 99mpbird 247 . . . . . . . . . 10 (𝜑 → (𝑥𝑋 ↦ 1) ∈ (ℂ ↑pm 𝑆))
101 dvn0 23687 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ 1) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0) = (𝑥𝑋 ↦ 1))
10278, 100, 101syl2anc 693 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0) = (𝑥𝑋 ↦ 1))
103102adantr 481 . . . . . . . 8 ((𝜑𝑘 = 0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0) = (𝑥𝑋 ↦ 1))
104 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝐷‘∅)‘𝑘) = ((𝐷‘∅)‘0))
105104adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 = 0) → ((𝐷‘∅)‘𝑘) = ((𝐷‘∅)‘0))
106 dvnprodlem3.d . . . . . . . . . . . . . . . . . 18 𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}))
107106a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})))
108 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ∅ → ((0...𝑛) ↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 ∅))
109 elmapfn 7880 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ((0...𝑛) ↑𝑚 ∅) → 𝑥 Fn ∅)
110 fn0 6011 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 Fn ∅ ↔ 𝑥 = ∅)
111109, 110sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ((0...𝑛) ↑𝑚 ∅) → 𝑥 = ∅)
112 velsn 4193 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
113111, 112sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ((0...𝑛) ↑𝑚 ∅) → 𝑥 ∈ {∅})
114112biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {∅} → 𝑥 = ∅)
115 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = ∅ → 𝑥 = ∅)
116 f0 6086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ∅:∅⟶(0...𝑛)
117 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0...𝑛) ∈ V
118 0ex 4790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ∅ ∈ V
119117, 118elmap 7886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∅ ∈ ((0...𝑛) ↑𝑚 ∅) ↔ ∅:∅⟶(0...𝑛))
120116, 119mpbir 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ∅ ∈ ((0...𝑛) ↑𝑚 ∅)
121120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = ∅ → ∅ ∈ ((0...𝑛) ↑𝑚 ∅))
122115, 121eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = ∅ → 𝑥 ∈ ((0...𝑛) ↑𝑚 ∅))
123114, 122syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ {∅} → 𝑥 ∈ ((0...𝑛) ↑𝑚 ∅))
124113, 123impbii 199 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ((0...𝑛) ↑𝑚 ∅) ↔ 𝑥 ∈ {∅})
125124ax-gen 1722 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥(𝑥 ∈ ((0...𝑛) ↑𝑚 ∅) ↔ 𝑥 ∈ {∅})
126 dfcleq 2616 . . . . . . . . . . . . . . . . . . . . . . . 24 (((0...𝑛) ↑𝑚 ∅) = {∅} ↔ ∀𝑥(𝑥 ∈ ((0...𝑛) ↑𝑚 ∅) ↔ 𝑥 ∈ {∅}))
127125, 126mpbir 221 . . . . . . . . . . . . . . . . . . . . . . 23 ((0...𝑛) ↑𝑚 ∅) = {∅}
128127a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ∅ → ((0...𝑛) ↑𝑚 ∅) = {∅})
129108, 128eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ∅ → ((0...𝑛) ↑𝑚 𝑠) = {∅})
130 rabeq 3192 . . . . . . . . . . . . . . . . . . . . 21 (((0...𝑛) ↑𝑚 𝑠) = {∅} → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})
131129, 130syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ∅ → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})
132 sumeq1 14419 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ∅ → Σ𝑡𝑠 (𝑐𝑡) = Σ𝑡 ∈ ∅ (𝑐𝑡))
133132eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ∅ → (Σ𝑡𝑠 (𝑐𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛))
134133rabbidv 3189 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ∅ → {𝑐 ∈ {∅} ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛})
135131, 134eqtrd 2656 . . . . . . . . . . . . . . . . . . 19 (𝑠 = ∅ → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛})
136135mpteq2dv 4745 . . . . . . . . . . . . . . . . . 18 (𝑠 = ∅ → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}))
137136adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 = ∅) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}))
138 0elpw 4834 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 𝒫 𝑇
139138a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ ∈ 𝒫 𝑇)
140 nn0ex 11298 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
141140mptex 6486 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}) ∈ V
142141a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}) ∈ V)
143107, 137, 139, 142fvmptd 6288 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷‘∅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}))
144 eqeq2 2633 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → (Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0))
145144rabbidv 3189 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0})
146145adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0})
147 0nn0 11307 . . . . . . . . . . . . . . . . 17 0 ∈ ℕ0
148147a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℕ0)
149 p0ex 4853 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
150149rabex 4813 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} ∈ V
151150a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} ∈ V)
152143, 146, 148, 151fvmptd 6288 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐷‘∅)‘0) = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0})
153152adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 = 0) → ((𝐷‘∅)‘0) = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0})
154 snidg 4206 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ V → ∅ ∈ {∅})
155118, 154ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ {∅}
156 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 0 = 0
157155, 156pm3.2i 471 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ {∅} ∧ 0 = 0)
158 sum0 14452 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑡 ∈ ∅ (𝑐𝑡) = 0
159158a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ∅ → Σ𝑡 ∈ ∅ (𝑐𝑡) = 0)
160159eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ∅ → (Σ𝑡 ∈ ∅ (𝑐𝑡) = 0 ↔ 0 = 0))
161160elrab 3363 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} ↔ (∅ ∈ {∅} ∧ 0 = 0))
162157, 161mpbir 221 . . . . . . . . . . . . . . . . . 18 ∅ ∈ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0}
163162n0ii 3922 . . . . . . . . . . . . . . . . 17 ¬ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = ∅
164 eqid 2622 . . . . . . . . . . . . . . . . . 18 {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0}
165 rabrsn 4259 . . . . . . . . . . . . . . . . . 18 ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} → ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = ∅ ∨ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {∅}))
166164, 165ax-mp 5 . . . . . . . . . . . . . . . . 17 ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = ∅ ∨ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {∅})
167163, 166mtpor 1695 . . . . . . . . . . . . . . . 16 {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {∅}
168167a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑘 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {∅})
169 iftrue 4092 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → if(𝑘 = 0, {∅}, ∅) = {∅})
170169adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 = 0) → if(𝑘 = 0, {∅}, ∅) = {∅})
171168, 170eqtr4d 2659 . . . . . . . . . . . . . 14 ((𝜑𝑘 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = if(𝑘 = 0, {∅}, ∅))
172105, 153, 1713eqtrd 2660 . . . . . . . . . . . . 13 ((𝜑𝑘 = 0) → ((𝐷‘∅)‘𝑘) = if(𝑘 = 0, {∅}, ∅))
173172, 170eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝑘 = 0) → ((𝐷‘∅)‘𝑘) = {∅})
174173sumeq1d 14431 . . . . . . . . . . 11 ((𝜑𝑘 = 0) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ {∅} (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
175 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (!‘𝑘) = (!‘0))
176 fac0 13063 . . . . . . . . . . . . . . . . . . 19 (!‘0) = 1
177176a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (!‘0) = 1)
178175, 177eqtrd 2656 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (!‘𝑘) = 1)
179178oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) = (1 / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))))
180 prod0 14673 . . . . . . . . . . . . . . . . . 18 𝑡 ∈ ∅ (!‘(𝑐𝑡)) = 1
181180oveq2i 6661 . . . . . . . . . . . . . . . . 17 (1 / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) = (1 / 1)
182 1div1e1 10717 . . . . . . . . . . . . . . . . 17 (1 / 1) = 1
183181, 182eqtri 2644 . . . . . . . . . . . . . . . 16 (1 / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) = 1
184179, 183syl6eq 2672 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) = 1)
185 prod0 14673 . . . . . . . . . . . . . . . 16 𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = 1
186185a1i 11 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = 1)
187184, 186oveq12d 6668 . . . . . . . . . . . . . 14 (𝑘 = 0 → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (1 · 1))
188187ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (1 · 1))
189 1t1e1 11175 . . . . . . . . . . . . . 14 (1 · 1) = 1
190189a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (1 · 1) = 1)
191188, 190eqtrd 2656 . . . . . . . . . . . 12 (((𝜑𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = 1)
192191sumeq2dv 14433 . . . . . . . . . . 11 ((𝜑𝑘 = 0) → Σ𝑐 ∈ {∅} (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ {∅}1)
193 ax-1cn 9994 . . . . . . . . . . . . 13 1 ∈ ℂ
194 eqidd 2623 . . . . . . . . . . . . . 14 (𝑐 = ∅ → 1 = 1)
195194sumsn 14475 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ 1 ∈ ℂ) → Σ𝑐 ∈ {∅}1 = 1)
196118, 193, 195mp2an 708 . . . . . . . . . . . 12 Σ𝑐 ∈ {∅}1 = 1
197196a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 = 0) → Σ𝑐 ∈ {∅}1 = 1)
198174, 192, 1973eqtrd 2660 . . . . . . . . . 10 ((𝜑𝑘 = 0) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = 1)
199198mpteq2dv 4745 . . . . . . . . 9 ((𝜑𝑘 = 0) → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ 1))
200199eqcomd 2628 . . . . . . . 8 ((𝜑𝑘 = 0) → (𝑥𝑋 ↦ 1) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
20175, 103, 2003eqtrd 2660 . . . . . . 7 ((𝜑𝑘 = 0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
202201a1d 25 . . . . . 6 ((𝜑𝑘 = 0) → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
20371fveq1i 6192 . . . . . . . . 9 ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘𝑘)
204203a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘𝑘))
20576adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑘 = 0) → 𝑆 ∈ {ℝ, ℂ})
206205adantr 481 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
20790adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑘 = 0) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
208207adantr 481 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
209193a1i 11 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
210 elfznn0 12433 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
211210adantl 482 . . . . . . . . . . . 12 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
212 neqne 2802 . . . . . . . . . . . . 13 𝑘 = 0 → 𝑘 ≠ 0)
213212adantr 481 . . . . . . . . . . . 12 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ≠ 0)
214211, 213jca 554 . . . . . . . . . . 11 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 ∈ ℕ0𝑘 ≠ 0))
215 elnnne0 11306 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
216214, 215sylibr 224 . . . . . . . . . 10 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ)
217216adantll 750 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ)
218206, 208, 209, 217dvnmptconst 40156 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘𝑘) = (𝑥𝑋 ↦ 0))
219143ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘∅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}))
220 eqeq2 2633 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘))
221220rabbidv 3189 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘})
222221adantl 482 . . . . . . . . . . . . . . 15 ((¬ 𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘})
223 eqidd 2623 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘𝑘 = 𝑘)
224 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘 → Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘)
225224eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘𝑘 = Σ𝑡 ∈ ∅ (𝑐𝑡))
226158a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘 → Σ𝑡 ∈ ∅ (𝑐𝑡) = 0)
227223, 225, 2263eqtrd 2660 . . . . . . . . . . . . . . . . . . . . 21 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘𝑘 = 0)
228227adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ {∅} ∧ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘) → 𝑘 = 0)
229228adantll 750 . . . . . . . . . . . . . . . . . . 19 (((¬ 𝑘 = 0 ∧ 𝑐 ∈ {∅}) ∧ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘) → 𝑘 = 0)
230 simpll 790 . . . . . . . . . . . . . . . . . . 19 (((¬ 𝑘 = 0 ∧ 𝑐 ∈ {∅}) ∧ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘) → ¬ 𝑘 = 0)
231229, 230pm2.65da 600 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑘 = 0 ∧ 𝑐 ∈ {∅}) → ¬ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘)
232231ralrimiva 2966 . . . . . . . . . . . . . . . . 17 𝑘 = 0 → ∀𝑐 ∈ {∅} ¬ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘)
233 rabeq0 3957 . . . . . . . . . . . . . . . . 17 ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘} = ∅ ↔ ∀𝑐 ∈ {∅} ¬ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘)
234232, 233sylibr 224 . . . . . . . . . . . . . . . 16 𝑘 = 0 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘} = ∅)
235234adantr 481 . . . . . . . . . . . . . . 15 ((¬ 𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘} = ∅)
236222, 235eqtrd 2656 . . . . . . . . . . . . . 14 ((¬ 𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = ∅)
237236adantll 750 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = ∅)
238237adantlr 751 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = ∅)
239210adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
240118a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ∅ ∈ V)
241219, 238, 239, 240fvmptd 6288 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐷‘∅)‘𝑘) = ∅)
242241sumeq1d 14431 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
243 sum0 14452 . . . . . . . . . . 11 Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = 0
244243a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = 0)
245242, 244eqtr2d 2657 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 0 = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
246245mpteq2dv 4745 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
247204, 218, 2463eqtrd 2660 . . . . . . 7 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
248247ex 450 . . . . . 6 ((𝜑 ∧ ¬ 𝑘 = 0) → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
249202, 248pm2.61dan 832 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
250249ralrimiv 2965 . . . 4 (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
251 simpll 790 . . . . . . . 8 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → (𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))))
252 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐻𝑡)‘𝑥) = ((𝐻𝑡)‘𝑦))
253252prodeq2ad 39824 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ∏𝑡𝑟 ((𝐻𝑡)‘𝑥) = ∏𝑡𝑟 ((𝐻𝑡)‘𝑦))
254 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑢 → (𝐻𝑡) = (𝐻𝑢))
255254fveq1d 6193 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑢 → ((𝐻𝑡)‘𝑦) = ((𝐻𝑢)‘𝑦))
256255cbvprodv 14646 . . . . . . . . . . . . . . . . 17 𝑡𝑟 ((𝐻𝑡)‘𝑦) = ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)
257256a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ∏𝑡𝑟 ((𝐻𝑡)‘𝑦) = ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))
258253, 257eqtrd 2656 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ∏𝑡𝑟 ((𝐻𝑡)‘𝑥) = ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))
259258cbvmptv 4750 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)) = (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))
260259oveq2i 6661 . . . . . . . . . . . . 13 (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))
261260fveq1i 6192 . . . . . . . . . . . 12 ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘)
262 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑢 → (𝑐𝑡) = (𝑐𝑢))
263262fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑢 → (!‘(𝑐𝑡)) = (!‘(𝑐𝑢)))
264263cbvprodv 14646 . . . . . . . . . . . . . . . . . 18 𝑡𝑟 (!‘(𝑐𝑡)) = ∏𝑢𝑟 (!‘(𝑐𝑢))
265264oveq2i 6661 . . . . . . . . . . . . . . . . 17 ((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢)))
266265a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))))
267 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦))
268267prodeq2ad 39824 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦))
269254oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑢 → (𝑆 D𝑛 (𝐻𝑡)) = (𝑆 D𝑛 (𝐻𝑢)))
270269, 262fveq12d 6197 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑢 → ((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡)) = ((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢)))
271270fveq1d 6193 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑢 → (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦) = (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦))
272271cbvprodv 14646 . . . . . . . . . . . . . . . . . 18 𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦) = ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)
273272a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦) = ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦))
274268, 273eqtrd 2656 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦))
275266, 274oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)))
276275sumeq2ad 14434 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)))
277 fveq1 6190 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑑 → (𝑐𝑢) = (𝑑𝑢))
278277fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑑 → (!‘(𝑐𝑢)) = (!‘(𝑑𝑢)))
279278prodeq2ad 39824 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑑 → ∏𝑢𝑟 (!‘(𝑐𝑢)) = ∏𝑢𝑟 (!‘(𝑑𝑢)))
280279oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑑 → ((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) = ((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))))
281277fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑑 → ((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢)) = ((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢)))
282281fveq1d 6193 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑑 → (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦) = (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))
283282prodeq2ad 39824 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑑 → ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦) = ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))
284280, 283oveq12d 6668 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑑 → (((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)) = (((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))
285284cbvsumv 14426 . . . . . . . . . . . . . . 15 Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)) = Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))
286285a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)) = Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))
287276, 286eqtrd 2656 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))
288287cbvmptv 4750 . . . . . . . . . . . 12 (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))
289261, 288eqeq12i 2636 . . . . . . . . . . 11 (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))))
290289ralbii 2980 . . . . . . . . . 10 (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))))
291290biimpi 206 . . . . . . . . 9 (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))))
292291ad2antlr 763 . . . . . . . 8 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))))
293 simpr 477 . . . . . . . 8 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁))
29476ad3antrrr 766 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
29590ad3antrrr 766 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
296 dvnprodlem3.t . . . . . . . . . 10 (𝜑𝑇 ∈ Fin)
297296ad3antrrr 766 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑇 ∈ Fin)
298 simp-4l 806 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝜑)
299 simpr 477 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝑡𝑇)
300 dvnprodlem3.h . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
301298, 299, 300syl2anc 693 . . . . . . . . 9 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
302 dvnprodlem3.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
303302ad3antrrr 766 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
304 simplll 798 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑)
3053043ad2ant1 1082 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇 ∈ (0...𝑁)) → 𝜑)
306 simp2 1062 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇 ∈ (0...𝑁)) → 𝑡𝑇)
307 simp3 1063 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇 ∈ (0...𝑁)) → ∈ (0...𝑁))
308 eleq1 2689 . . . . . . . . . . . . 13 (𝑗 = → (𝑗 ∈ (0...𝑁) ↔ ∈ (0...𝑁)))
3093083anbi3d 1405 . . . . . . . . . . . 12 (𝑗 = → ((𝜑𝑡𝑇𝑗 ∈ (0...𝑁)) ↔ (𝜑𝑡𝑇 ∈ (0...𝑁))))
310 fveq2 6191 . . . . . . . . . . . . 13 (𝑗 = → ((𝑆 D𝑛 (𝐻𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻𝑡))‘))
311310feq1d 6030 . . . . . . . . . . . 12 (𝑗 = → (((𝑆 D𝑛 (𝐻𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻𝑡))‘):𝑋⟶ℂ))
312309, 311imbi12d 334 . . . . . . . . . . 11 (𝑗 = → (((𝜑𝑡𝑇𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑𝑡𝑇 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘):𝑋⟶ℂ)))
313 dvnprodlem3.dvnh . . . . . . . . . . 11 ((𝜑𝑡𝑇𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑗):𝑋⟶ℂ)
314312, 313chvarv 2263 . . . . . . . . . 10 ((𝜑𝑡𝑇 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘):𝑋⟶ℂ)
315305, 306, 307, 314syl3anc 1326 . . . . . . . . 9 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘):𝑋⟶ℂ)
316 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) → 𝑟𝑇)
317316ad2antrr 762 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑟𝑇)
318 simprr 796 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) → 𝑧 ∈ (𝑇𝑟))
319318ad2antrr 762 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑧 ∈ (𝑇𝑟))
320260eqcomi 2631 . . . . . . . . . . . . . . 15 (𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))
321320a1i 11 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥))))
322 id 22 . . . . . . . . . . . . . 14 (𝑘 = 𝑙𝑘 = 𝑙)
323321, 322fveq12d 6197 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → ((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙))
324288eqcomi 2631 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
325324a1i 11 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
326 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (!‘𝑘) = (!‘𝑙))
327326oveq1d 6665 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → ((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) = ((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))))
328327oveq1d 6665 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
329328sumeq2ad 14434 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
330 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝐷𝑟)‘𝑘) = ((𝐷𝑟)‘𝑙))
331330sumeq1d 14431 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
332329, 331eqtrd 2656 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
333332mpteq2dv 4745 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
334325, 333eqtrd 2656 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
335323, 334eqeq12d 2637 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
336335cbvralv 3171 . . . . . . . . . . 11 (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) ↔ ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
337336biimpi 206 . . . . . . . . . 10 (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) → ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
338337ad2antlr 763 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
339 simpr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁))
340 fveq1 6190 . . . . . . . . . . . 12 (𝑑 = 𝑐 → (𝑑𝑧) = (𝑐𝑧))
341340oveq2d 6666 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑗 − (𝑑𝑧)) = (𝑗 − (𝑐𝑧)))
342 reseq1 5390 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑑𝑟) = (𝑐𝑟))
343341, 342opeq12d 4410 . . . . . . . . . 10 (𝑑 = 𝑐 → ⟨(𝑗 − (𝑑𝑧)), (𝑑𝑟)⟩ = ⟨(𝑗 − (𝑐𝑧)), (𝑐𝑟)⟩)
344343cbvmptv 4750 . . . . . . . . 9 (𝑑 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) ↦ ⟨(𝑗 − (𝑑𝑧)), (𝑑𝑟)⟩) = (𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) ↦ ⟨(𝑗 − (𝑐𝑧)), (𝑐𝑟)⟩)
345294, 295, 297, 301, 303, 315, 106, 317, 319, 338, 339, 344dvnprodlem2 40162 . . . . . . . 8 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
346251, 292, 293, 345syl21anc 1325 . . . . . . 7 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
347346ralrimiva 2966 . . . . . 6 (((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) → ∀𝑗 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
348 fveq2 6191 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘))
349 fveq2 6191 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
350349oveq1d 6665 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))))
351350oveq1d 6665 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
352351sumeq2ad 14434 . . . . . . . . . 10 (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
353 fveq2 6191 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) = ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘))
354353sumeq1d 14431 . . . . . . . . . 10 (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
355352, 354eqtrd 2656 . . . . . . . . 9 (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
356355mpteq2dv 4745 . . . . . . . 8 (𝑗 = 𝑘 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
357348, 356eqeq12d 2637 . . . . . . 7 (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
358357cbvralv 3171 . . . . . 6 (∀𝑗 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
359347, 358sylib 208 . . . . 5 (((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
360359ex 450 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
36116, 32, 48, 68, 250, 360, 296findcard2d 8202 . . 3 (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
362 nn0uz 11722 . . . . 5 0 = (ℤ‘0)
363302, 362syl6eleq 2711 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
364 eluzfz2 12349 . . . 4 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
365363, 364syl 17 . . 3 (𝜑𝑁 ∈ (0...𝑁))
366 fveq2 6191 . . . . 5 (𝑘 = 𝑁 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑁))
367 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑁 → ((𝐷𝑇)‘𝑘) = ((𝐷𝑇)‘𝑁))
368367sumeq1d 14431 . . . . . . 7 (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
369 fveq2 6191 . . . . . . . . . 10 (𝑘 = 𝑁 → (!‘𝑘) = (!‘𝑁))
370369oveq1d 6665 . . . . . . . . 9 (𝑘 = 𝑁 → ((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) = ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))))
371370oveq1d 6665 . . . . . . . 8 (𝑘 = 𝑁 → (((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
372371sumeq2ad 14434 . . . . . . 7 (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
373368, 372eqtrd 2656 . . . . . 6 (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
374373mpteq2dv 4745 . . . . 5 (𝑘 = 𝑁 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
375366, 374eqeq12d 2637 . . . 4 (𝑘 = 𝑁 → (((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
376375rspccva 3308 . . 3 ((∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ∧ 𝑁 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
377361, 365, 376syl2anc 693 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
378 oveq2 6658 . . . . . . . . . . 11 (𝑠 = 𝑇 → ((0...𝑛) ↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 𝑇))
379 rabeq 3192 . . . . . . . . . . 11 (((0...𝑛) ↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 𝑇) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})
380378, 379syl 17 . . . . . . . . . 10 (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})
381 sumeq1 14419 . . . . . . . . . . . 12 (𝑠 = 𝑇 → Σ𝑡𝑠 (𝑐𝑡) = Σ𝑡𝑇 (𝑐𝑡))
382381eqeq1d 2624 . . . . . . . . . . 11 (𝑠 = 𝑇 → (Σ𝑡𝑠 (𝑐𝑡) = 𝑛 ↔ Σ𝑡𝑇 (𝑐𝑡) = 𝑛))
383382rabbidv 3189 . . . . . . . . . 10 (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
384380, 383eqtrd 2656 . . . . . . . . 9 (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
385384mpteq2dv 4745 . . . . . . . 8 (𝑠 = 𝑇 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}))
386385adantl 482 . . . . . . 7 ((𝜑𝑠 = 𝑇) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}))
387 pwidg 4173 . . . . . . . 8 (𝑇 ∈ Fin → 𝑇 ∈ 𝒫 𝑇)
388296, 387syl 17 . . . . . . 7 (𝜑𝑇 ∈ 𝒫 𝑇)
389140mptex 6486 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}) ∈ V
390389a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}) ∈ V)
391107, 386, 388, 390fvmptd 6288 . . . . . 6 (𝜑 → (𝐷𝑇) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}))
392 dvnprodlem3.c . . . . . . 7 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
393392a1i 11 . . . . . 6 (𝜑𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}))
394391, 393eqtr4d 2659 . . . . 5 (𝜑 → (𝐷𝑇) = 𝐶)
395394fveq1d 6193 . . . 4 (𝜑 → ((𝐷𝑇)‘𝑁) = (𝐶𝑁))
396395sumeq1d 14431 . . 3 (𝜑 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
397396mpteq2dv 4745 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
398377, 397eqtrd 2656 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  {cpr 4179  cop 4183  cmpt 4729  dom cdm 5114  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  pm cpm 7858  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cuz 11687  ...cfz 12326  !cfa 13060  Σcsu 14416  cprod 14635  t crest 16081  TopOpenctopn 16082  fldccnfld 19746   D𝑛 cdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  dvnprod  40164
  Copyright terms: Public domain W3C validator