| Step | Hyp | Ref
| Expression |
| 1 | | pntlem1.r |
. . . . . . . . . 10
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
| 2 | | pntlem1.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 3 | | pntlem1.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
| 4 | | pntlem1.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
| 5 | | pntlem1.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝐴 + 1) |
| 6 | | pntlem1.f |
. . . . . . . . . 10
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
| 7 | | pntlem1.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
| 8 | | pntlem1.u2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≤ 𝐴) |
| 9 | | pntlem1.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝑈 / 𝐷) |
| 10 | | pntlem1.k |
. . . . . . . . . 10
⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
| 11 | | pntlem1.y |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) |
| 12 | | pntlem1.x |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
| 13 | | pntlem1.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 14 | | pntlem1.w |
. . . . . . . . . 10
⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
| 15 | | pntlem1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | pntlemb 25286 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 <
𝑍 ∧ e ≤
(√‘𝑍) ∧
(√‘𝑍) ≤
(𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
| 17 | 16 | simp1d 1073 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈
ℝ+) |
| 18 | 1 | pntrf 25252 |
. . . . . . . . 9
⊢ 𝑅:ℝ+⟶ℝ |
| 19 | 18 | ffvelrni 6358 |
. . . . . . . 8
⊢ (𝑍 ∈ ℝ+
→ (𝑅‘𝑍) ∈
ℝ) |
| 20 | 17, 19 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑅‘𝑍) ∈ ℝ) |
| 21 | 20, 17 | rerpdivcld 11903 |
. . . . . 6
⊢ (𝜑 → ((𝑅‘𝑍) / 𝑍) ∈ ℝ) |
| 22 | 21 | recnd 10068 |
. . . . 5
⊢ (𝜑 → ((𝑅‘𝑍) / 𝑍) ∈ ℂ) |
| 23 | 22 | abscld 14175 |
. . . 4
⊢ (𝜑 → (abs‘((𝑅‘𝑍) / 𝑍)) ∈ ℝ) |
| 24 | 17 | relogcld 24369 |
. . . 4
⊢ (𝜑 → (log‘𝑍) ∈
ℝ) |
| 25 | 23, 24 | remulcld 10070 |
. . 3
⊢ (𝜑 → ((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) ∈ ℝ) |
| 26 | 7 | rpred 11872 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 27 | | 3re 11094 |
. . . . . . . 8
⊢ 3 ∈
ℝ |
| 28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 3 ∈
ℝ) |
| 29 | 24, 28 | readdcld 10069 |
. . . . . 6
⊢ (𝜑 → ((log‘𝑍) + 3) ∈
ℝ) |
| 30 | 26, 29 | remulcld 10070 |
. . . . 5
⊢ (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℝ) |
| 31 | | 2re 11090 |
. . . . . . 7
⊢ 2 ∈
ℝ |
| 32 | 31 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℝ) |
| 33 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pntlemc 25284 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+
∧ (𝐸 ∈ (0(,)1)
∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+))) |
| 34 | 33 | simp3d 1075 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+)) |
| 35 | 34 | simp3d 1075 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈 − 𝐸) ∈
ℝ+) |
| 36 | 35 | rpred 11872 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℝ) |
| 37 | 1, 2, 3, 4, 5, 6 | pntlemd 25283 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+
∧ 𝐹 ∈
ℝ+)) |
| 38 | 37 | simp1d 1073 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈
ℝ+) |
| 39 | 33 | simp1d 1073 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 40 | | 2z 11409 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
| 41 | | rpexpcl 12879 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝐸↑2) ∈
ℝ+) |
| 42 | 39, 40, 41 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸↑2) ∈
ℝ+) |
| 43 | 38, 42 | rpmulcld 11888 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 · (𝐸↑2)) ∈
ℝ+) |
| 44 | | 3nn0 11310 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℕ0 |
| 45 | | 2nn 11185 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ |
| 46 | 44, 45 | decnncl 11518 |
. . . . . . . . . . . 12
⊢ ;32 ∈ ℕ |
| 47 | | nnrp 11842 |
. . . . . . . . . . . 12
⊢ (;32 ∈ ℕ → ;32 ∈
ℝ+) |
| 48 | 46, 47 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ;32 ∈
ℝ+ |
| 49 | | rpmulcl 11855 |
. . . . . . . . . . 11
⊢ ((;32 ∈ ℝ+ ∧
𝐵 ∈
ℝ+) → (;32
· 𝐵) ∈
ℝ+) |
| 50 | 48, 3, 49 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝜑 → (;32 · 𝐵) ∈
ℝ+) |
| 51 | 43, 50 | rpdivcld 11889 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) ∈
ℝ+) |
| 52 | 51 | rpred 11872 |
. . . . . . . 8
⊢ (𝜑 → ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) ∈ ℝ) |
| 53 | 36, 52 | remulcld 10070 |
. . . . . . 7
⊢ (𝜑 → ((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) ∈ ℝ) |
| 54 | 53, 24 | remulcld 10070 |
. . . . . 6
⊢ (𝜑 → (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) ∈ ℝ) |
| 55 | 32, 54 | remulcld 10070 |
. . . . 5
⊢ (𝜑 → (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) ∈ ℝ) |
| 56 | 30, 55 | resubcld 10458 |
. . . 4
⊢ (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) ∈ ℝ) |
| 57 | 13 | rpred 11872 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 58 | 56, 57 | readdcld 10069 |
. . 3
⊢ (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ∈ ℝ) |
| 59 | 7 | rpcnd 11874 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 60 | 53 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → ((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) ∈ ℂ) |
| 61 | 24 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → (log‘𝑍) ∈
ℂ) |
| 62 | 59, 60, 61 | subdird 10487 |
. . . . 5
⊢ (𝜑 → ((𝑈 − ((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
| 63 | 38 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ ℂ) |
| 64 | 42 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸↑2) ∈ ℂ) |
| 65 | 50 | rpcnne0d 11881 |
. . . . . . . . . . 11
⊢ (𝜑 → ((;32 · 𝐵) ∈ ℂ ∧ (;32 · 𝐵) ≠ 0)) |
| 66 | | div23 10704 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧
((;32 · 𝐵) ∈ ℂ ∧ (;32 · 𝐵) ≠ 0)) → ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) = ((𝐿 / (;32 · 𝐵)) · (𝐸↑2))) |
| 67 | 63, 64, 65, 66 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) = ((𝐿 / (;32 · 𝐵)) · (𝐸↑2))) |
| 68 | 9 | oveq1i 6660 |
. . . . . . . . . . . 12
⊢ (𝐸↑2) = ((𝑈 / 𝐷)↑2) |
| 69 | 37 | simp2d 1074 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈
ℝ+) |
| 70 | 69 | rpcnd 11874 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 71 | 69 | rpne0d 11877 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ≠ 0) |
| 72 | 59, 70, 71 | sqdivd 13021 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈 / 𝐷)↑2) = ((𝑈↑2) / (𝐷↑2))) |
| 73 | 68, 72 | syl5eq 2668 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸↑2) = ((𝑈↑2) / (𝐷↑2))) |
| 74 | 73 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) · (𝐸↑2)) = ((𝐿 / (;32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2)))) |
| 75 | 38, 50 | rpdivcld 11889 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈
ℝ+) |
| 76 | 75 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 / (;32 · 𝐵)) ∈ ℂ) |
| 77 | 59 | sqcld 13006 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈↑2) ∈ ℂ) |
| 78 | | rpexpcl 12879 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝐷↑2) ∈
ℝ+) |
| 79 | 69, 40, 78 | sylancl 694 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷↑2) ∈
ℝ+) |
| 80 | 79 | rpcnne0d 11881 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠
0)) |
| 81 | | divass 10703 |
. . . . . . . . . . . 12
⊢ (((𝐿 / (;32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧
(𝐷↑2) ≠ 0)) →
(((𝐿 / (;32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = ((𝐿 / (;32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2)))) |
| 82 | | div23 10704 |
. . . . . . . . . . . 12
⊢ (((𝐿 / (;32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧
(𝐷↑2) ≠ 0)) →
(((𝐿 / (;32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = (((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))) |
| 83 | 81, 82 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (((𝐿 / (;32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧
(𝐷↑2) ≠ 0)) →
((𝐿 / (;32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))) |
| 84 | 76, 77, 80, 83 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))) |
| 85 | 67, 74, 84 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) = (((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))) |
| 86 | 85 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝜑 → ((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) = ((𝑈 − 𝐸) · (((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))) |
| 87 | | df-3 11080 |
. . . . . . . . . . . . 13
⊢ 3 = (2 +
1) |
| 88 | 87 | oveq2i 6661 |
. . . . . . . . . . . 12
⊢ (𝑈↑3) = (𝑈↑(2 + 1)) |
| 89 | | 2nn0 11309 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
| 90 | | expp1 12867 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ ℂ ∧ 2 ∈
ℕ0) → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈)) |
| 91 | 59, 89, 90 | sylancl 694 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈)) |
| 92 | 88, 91 | syl5eq 2668 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈↑3) = ((𝑈↑2) · 𝑈)) |
| 93 | 77, 59 | mulcomd 10061 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑈↑2) · 𝑈) = (𝑈 · (𝑈↑2))) |
| 94 | 92, 93 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈↑3) = (𝑈 · (𝑈↑2))) |
| 95 | 94 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 · (𝑈↑3)) = (𝐹 · (𝑈 · (𝑈↑2)))) |
| 96 | 37 | simp3d 1075 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈
ℝ+) |
| 97 | 96 | rpcnd 11874 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ℂ) |
| 98 | 97, 59, 77 | mulassd 10063 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = (𝐹 · (𝑈 · (𝑈↑2)))) |
| 99 | | 1cnd 10056 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℂ) |
| 100 | 69 | rpreccld 11882 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 / 𝐷) ∈
ℝ+) |
| 101 | 100 | rpcnd 11874 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 / 𝐷) ∈ ℂ) |
| 102 | 99, 101, 59 | subdird 10487 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1 − (1 / 𝐷)) · 𝑈) = ((1 · 𝑈) − ((1 / 𝐷) · 𝑈))) |
| 103 | 59 | mulid2d 10058 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 · 𝑈) = 𝑈) |
| 104 | 59, 70, 71 | divrec2d 10805 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑈 / 𝐷) = ((1 / 𝐷) · 𝑈)) |
| 105 | 9, 104 | syl5req 2669 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1 / 𝐷) · 𝑈) = 𝐸) |
| 106 | 103, 105 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)) = (𝑈 − 𝐸)) |
| 107 | 102, 106 | eqtr2d 2657 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑈 − 𝐸) = ((1 − (1 / 𝐷)) · 𝑈)) |
| 108 | 107 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈 − 𝐸) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)))) |
| 109 | 6 | oveq1i 6660 |
. . . . . . . . . . . . 13
⊢ (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) · 𝑈) |
| 110 | 99, 101 | subcld 10392 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 − (1 / 𝐷)) ∈
ℂ) |
| 111 | 75, 79 | rpdivcld 11889 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈
ℝ+) |
| 112 | 111 | rpcnd 11874 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) ∈ ℂ) |
| 113 | 110, 112,
59 | mul32d 10246 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)))) |
| 114 | 109, 113 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2)))) |
| 115 | 108, 114 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑈 − 𝐸) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) = (𝐹 · 𝑈)) |
| 116 | 115 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑈 − 𝐸) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝐹 · 𝑈) · (𝑈↑2))) |
| 117 | 35 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℂ) |
| 118 | 117, 112,
77 | mulassd 10063 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑈 − 𝐸) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝑈 − 𝐸) · (((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))) |
| 119 | 116, 118 | eqtr3d 2658 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = ((𝑈 − 𝐸) · (((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))) |
| 120 | 95, 98, 119 | 3eqtr2d 2662 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 · (𝑈↑3)) = ((𝑈 − 𝐸) · (((𝐿 / (;32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))) |
| 121 | 86, 120 | eqtr4d 2659 |
. . . . . . 7
⊢ (𝜑 → ((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) = (𝐹 · (𝑈↑3))) |
| 122 | 121 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → (𝑈 − ((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)))) = (𝑈 − (𝐹 · (𝑈↑3)))) |
| 123 | 122 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → ((𝑈 − ((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍))) |
| 124 | 62, 123 | eqtr3d 2658 |
. . . 4
⊢ (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍))) |
| 125 | 26, 24 | remulcld 10070 |
. . . . 5
⊢ (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℝ) |
| 126 | 125, 54 | resubcld 10458 |
. . . 4
⊢ (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) ∈ ℝ) |
| 127 | 124, 126 | eqeltrrd 2702 |
. . 3
⊢ (𝜑 → ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)) ∈
ℝ) |
| 128 | 17 | rpred 11872 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ ℝ) |
| 129 | 16 | simp2d 1074 |
. . . . . . . . 9
⊢ (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌))) |
| 130 | 129 | simp1d 1073 |
. . . . . . . 8
⊢ (𝜑 → 1 < 𝑍) |
| 131 | 128, 130 | rplogcld 24375 |
. . . . . . 7
⊢ (𝜑 → (log‘𝑍) ∈
ℝ+) |
| 132 | 32, 131 | rerpdivcld 11903 |
. . . . . 6
⊢ (𝜑 → (2 / (log‘𝑍)) ∈
ℝ) |
| 133 | | fzfid 12772 |
. . . . . . 7
⊢ (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin) |
| 134 | 17 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈
ℝ+) |
| 135 | | elfznn 12370 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌))) → 𝑛 ∈
ℕ) |
| 136 | 135 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ) |
| 137 | 136 | nnrpd 11870 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+) |
| 138 | 134, 137 | rpdivcld 11889 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈
ℝ+) |
| 139 | 18 | ffvelrni 6358 |
. . . . . . . . . . . 12
⊢ ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ) |
| 140 | 138, 139 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ) |
| 141 | 140, 134 | rerpdivcld 11903 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ) |
| 142 | 141 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ) |
| 143 | 142 | abscld 14175 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ) |
| 144 | 137 | relogcld 24369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ) |
| 145 | 143, 144 | remulcld 10070 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ) |
| 146 | 133, 145 | fsumrecl 14465 |
. . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ) |
| 147 | 132, 146 | remulcld 10070 |
. . . . 5
⊢ (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ) |
| 148 | 147, 57 | readdcld 10069 |
. . . 4
⊢ (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ∈ ℝ) |
| 149 | 20 | recnd 10068 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅‘𝑍) ∈ ℂ) |
| 150 | 149 | abscld 14175 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘(𝑅‘𝑍)) ∈ ℝ) |
| 151 | 150 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝑅‘𝑍)) ∈ ℂ) |
| 152 | 151, 61 | mulcld 10060 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘(𝑅‘𝑍)) · (log‘𝑍)) ∈ ℂ) |
| 153 | 132 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → (2 / (log‘𝑍)) ∈
ℂ) |
| 154 | 140 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ) |
| 155 | 154 | abscld 14175 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℝ) |
| 156 | 155, 144 | remulcld 10070 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 157 | 133, 156 | fsumrecl 14465 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 158 | 157 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 159 | 153, 158 | mulcld 10060 |
. . . . . . . 8
⊢ (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) ∈ ℂ) |
| 160 | 17 | rpcnd 11874 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ ℂ) |
| 161 | 17 | rpne0d 11877 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ≠ 0) |
| 162 | 152, 159,
160, 161 | divsubdird 10840 |
. . . . . . 7
⊢ (𝜑 → ((((abs‘(𝑅‘𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = ((((abs‘(𝑅‘𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍))) |
| 163 | 151, 61, 160, 161 | div23d 10838 |
. . . . . . . . 9
⊢ (𝜑 → (((abs‘(𝑅‘𝑍)) · (log‘𝑍)) / 𝑍) = (((abs‘(𝑅‘𝑍)) / 𝑍) · (log‘𝑍))) |
| 164 | 149, 160,
161 | absdivd 14194 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘((𝑅‘𝑍) / 𝑍)) = ((abs‘(𝑅‘𝑍)) / (abs‘𝑍))) |
| 165 | 17 | rprege0d 11879 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍)) |
| 166 | | absid 14036 |
. . . . . . . . . . . . 13
⊢ ((𝑍 ∈ ℝ ∧ 0 ≤
𝑍) → (abs‘𝑍) = 𝑍) |
| 167 | 165, 166 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘𝑍) = 𝑍) |
| 168 | 167 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs‘(𝑅‘𝑍)) / (abs‘𝑍)) = ((abs‘(𝑅‘𝑍)) / 𝑍)) |
| 169 | 164, 168 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘((𝑅‘𝑍) / 𝑍)) = ((abs‘(𝑅‘𝑍)) / 𝑍)) |
| 170 | 169 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) = (((abs‘(𝑅‘𝑍)) / 𝑍) · (log‘𝑍))) |
| 171 | 163, 170 | eqtr4d 2659 |
. . . . . . . 8
⊢ (𝜑 → (((abs‘(𝑅‘𝑍)) · (log‘𝑍)) / 𝑍) = ((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍))) |
| 172 | 153, 158,
160, 161 | divassd 10836 |
. . . . . . . . 9
⊢ (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))) |
| 173 | 160 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℂ) |
| 174 | 161 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ≠ 0) |
| 175 | 154, 173,
174 | absdivd 14194 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍))) |
| 176 | 167 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘𝑍) = 𝑍) |
| 177 | 176 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍)) |
| 178 | 175, 177 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍)) |
| 179 | 178 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛))) |
| 180 | 155 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ) |
| 181 | 144 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ) |
| 182 | 17 | rpcnne0d 11881 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) |
| 183 | 182 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) |
| 184 | | div23 10704 |
. . . . . . . . . . . . . 14
⊢
(((abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) →
(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛))) |
| 185 | 180, 181,
183, 184 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛))) |
| 186 | 179, 185 | eqtr4d 2659 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)) |
| 187 | 186 | sumeq2dv 14433 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)) |
| 188 | 156 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 189 | 133, 160,
188, 161 | fsumdivc 14518 |
. . . . . . . . . . 11
⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)) |
| 190 | 187, 189 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)) |
| 191 | 190 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))) |
| 192 | 172, 191 | eqtr4d 2659 |
. . . . . . . 8
⊢ (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) |
| 193 | 171, 192 | oveq12d 6668 |
. . . . . . 7
⊢ (𝜑 → ((((abs‘(𝑅‘𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)) = (((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))) |
| 194 | 162, 193 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ((((abs‘(𝑅‘𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = (((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))) |
| 195 | | 1re 10039 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 196 | | rexr 10085 |
. . . . . . . . 9
⊢ (1 ∈
ℝ → 1 ∈ ℝ*) |
| 197 | | elioopnf 12267 |
. . . . . . . . 9
⊢ (1 ∈
ℝ* → (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 <
𝑍))) |
| 198 | 195, 196,
197 | mp2b 10 |
. . . . . . . 8
⊢ (𝑍 ∈ (1(,)+∞) ↔
(𝑍 ∈ ℝ ∧ 1
< 𝑍)) |
| 199 | 128, 130,
198 | sylanbrc 698 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (1(,)+∞)) |
| 200 | | pntlem1.C |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) |
| 201 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑍 → (𝑅‘𝑧) = (𝑅‘𝑍)) |
| 202 | 201 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑍 → (abs‘(𝑅‘𝑧)) = (abs‘(𝑅‘𝑍))) |
| 203 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑍 → (log‘𝑧) = (log‘𝑍)) |
| 204 | 202, 203 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑍 → ((abs‘(𝑅‘𝑧)) · (log‘𝑧)) = ((abs‘(𝑅‘𝑍)) · (log‘𝑍))) |
| 205 | 203 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑍 → (2 / (log‘𝑧)) = (2 / (log‘𝑍))) |
| 206 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑛 → (𝑧 / 𝑖) = (𝑧 / 𝑛)) |
| 207 | 206 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑛 → (𝑅‘(𝑧 / 𝑖)) = (𝑅‘(𝑧 / 𝑛))) |
| 208 | 207 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑛 → (abs‘(𝑅‘(𝑧 / 𝑖))) = (abs‘(𝑅‘(𝑧 / 𝑛)))) |
| 209 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑛 → (log‘𝑖) = (log‘𝑛)) |
| 210 | 208, 209 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑛 → ((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛))) |
| 211 | 210 | cbvsumv 14426 |
. . . . . . . . . . . . 13
⊢
Σ𝑖 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) |
| 212 | | oveq1 6657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑍 → (𝑧 / 𝑌) = (𝑍 / 𝑌)) |
| 213 | 212 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑍 → (⌊‘(𝑧 / 𝑌)) = (⌊‘(𝑍 / 𝑌))) |
| 214 | 213 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑍 → (1...(⌊‘(𝑧 / 𝑌))) = (1...(⌊‘(𝑍 / 𝑌)))) |
| 215 | | simpl 473 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 = 𝑍 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑧 = 𝑍) |
| 216 | 215 | oveq1d 6665 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 = 𝑍 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑧 / 𝑛) = (𝑍 / 𝑛)) |
| 217 | 216 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 = 𝑍 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑧 / 𝑛)) = (𝑅‘(𝑍 / 𝑛))) |
| 218 | 217 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 = 𝑍 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑧 / 𝑛))) = (abs‘(𝑅‘(𝑍 / 𝑛)))) |
| 219 | 218 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = 𝑍 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) |
| 220 | 214, 219 | sumeq12rdv 14438 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑍 → Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) |
| 221 | 211, 220 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑍 → Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) |
| 222 | 205, 221 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑍 → ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖))) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) |
| 223 | 204, 222 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑍 → (((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) = (((abs‘(𝑅‘𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))))) |
| 224 | | id 22 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑍 → 𝑧 = 𝑍) |
| 225 | 223, 224 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑧 = 𝑍 → ((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) = ((((abs‘(𝑅‘𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍)) |
| 226 | 225 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑧 = 𝑍 → (((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶 ↔ ((((abs‘(𝑅‘𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶)) |
| 227 | 226 | rspcv 3305 |
. . . . . . 7
⊢ (𝑍 ∈ (1(,)+∞) →
(∀𝑧 ∈
(1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶 → ((((abs‘(𝑅‘𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶)) |
| 228 | 199, 200,
227 | sylc 65 |
. . . . . 6
⊢ (𝜑 → ((((abs‘(𝑅‘𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶) |
| 229 | 194, 228 | eqbrtrrd 4677 |
. . . . 5
⊢ (𝜑 → (((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶) |
| 230 | 25, 147, 57 | lesubadd2d 10626 |
. . . . 5
⊢ (𝜑 → ((((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶 ↔ ((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶))) |
| 231 | 229, 230 | mpbid 222 |
. . . 4
⊢ (𝜑 → ((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶)) |
| 232 | | 2cnd 11093 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℂ) |
| 233 | 143 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℂ) |
| 234 | 233, 181 | mulcld 10060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ) |
| 235 | 133, 234 | fsumcl 14464 |
. . . . . . 7
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ) |
| 236 | 131 | rpne0d 11877 |
. . . . . . 7
⊢ (𝜑 → (log‘𝑍) ≠ 0) |
| 237 | 232, 235,
61, 236 | div23d 10838 |
. . . . . 6
⊢ (𝜑 → ((2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) |
| 238 | 24 | resqcld 13035 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝑍)↑2) ∈
ℝ) |
| 239 | 52, 238 | remulcld 10070 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ) |
| 240 | 36, 239 | remulcld 10070 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ) |
| 241 | | remulcl 10021 |
. . . . . . . . . 10
⊢ ((2
∈ ℝ ∧ ((𝑈
− 𝐸) ·
(((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ) → (2
· ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈
ℝ) |
| 242 | 31, 240, 241 | sylancr 695 |
. . . . . . . . 9
⊢ (𝜑 → (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈
ℝ) |
| 243 | 30, 24 | remulcld 10070 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) ∈
ℝ) |
| 244 | | remulcl 10021 |
. . . . . . . . . 10
⊢ ((2
∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ) → (2 ·
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ) |
| 245 | 31, 146, 244 | sylancr 695 |
. . . . . . . . 9
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ) |
| 246 | 26 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ) |
| 247 | 246, 136 | nndivred 11069 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ) |
| 248 | 247, 143 | resubcld 10458 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ) |
| 249 | 248, 144 | remulcld 10070 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
| 250 | 133, 249 | fsumrecl 14465 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
| 251 | 32, 250 | remulcld 10070 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ∈ ℝ) |
| 252 | 243, 245 | resubcld 10458 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 ·
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ∈ ℝ) |
| 253 | | pntlem1.m |
. . . . . . . . . . . 12
⊢ 𝑀 =
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) |
| 254 | | pntlem1.n |
. . . . . . . . . . . 12
⊢ 𝑁 =
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) |
| 255 | | pntlem1.U |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) |
| 256 | | pntlem1.K |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
| 257 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 253, 254, 255, 256 | pntlemf 25294 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
| 258 | | 2pos 11112 |
. . . . . . . . . . . . 13
⊢ 0 <
2 |
| 259 | 258 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 2) |
| 260 | | lemul2 10876 |
. . . . . . . . . . . 12
⊢ ((((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ ∧
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → (((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
| 261 | 240, 250,
32, 259, 260 | syl112anc 1330 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
| 262 | 257, 261 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
| 263 | 247 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℂ) |
| 264 | 263, 233,
181 | subdird 10487 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) |
| 265 | 264 | sumeq2dv 14433 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) |
| 266 | 247, 144 | remulcld 10070 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ) |
| 267 | 266 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ) |
| 268 | 133, 267,
234 | fsumsub 14520 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) |
| 269 | 265, 268 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) |
| 270 | 269 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))) |
| 271 | 133, 266 | fsumrecl 14465 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ) |
| 272 | 271 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ) |
| 273 | 232, 272,
235 | subdid 10486 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 · (Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))) |
| 274 | 270, 273 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))) |
| 275 | | remulcl 10021 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ) → (2 ·
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ) |
| 276 | 31, 271, 275 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ) |
| 277 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 253, 254, 255, 256 | pntlemk 25295 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍))) |
| 278 | 276, 243,
245, 277 | lesub1dd 10643 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 ·
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))) |
| 279 | 274, 278 | eqbrtrd 4675 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 ·
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))) |
| 280 | 242, 251,
252, 262, 279 | letrd 10194 |
. . . . . . . . 9
⊢ (𝜑 → (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 ·
Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))) |
| 281 | 242, 243,
245, 280 | lesubd 10631 |
. . . . . . . 8
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))))) |
| 282 | 30 | recnd 10068 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℂ) |
| 283 | 55 | recnd 10068 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) ∈ ℂ) |
| 284 | 282, 283,
61 | subdird 10487 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)))) |
| 285 | 54 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) ∈ ℂ) |
| 286 | 232, 285,
61 | mulassd 10063 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)))) |
| 287 | 60, 61, 61 | mulassd 10063 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍)))) |
| 288 | 61 | sqvald 13005 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍))) |
| 289 | 288 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · ((log‘𝑍)↑2)) = (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍)))) |
| 290 | 51 | rpcnd 11874 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) ∈ ℂ) |
| 291 | 238 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((log‘𝑍)↑2) ∈
ℂ) |
| 292 | 117, 290,
291 | mulassd 10063 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · ((log‘𝑍)↑2)) = ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))) |
| 293 | 287, 289,
292 | 3eqtr2d 2662 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))) |
| 294 | 293 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · ((((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))) = (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))))) |
| 295 | 286, 294 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝜑 → ((2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))))) |
| 296 | 295 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))))) |
| 297 | 284, 296 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)))))) |
| 298 | 281, 297 | breqtrrd 4681 |
. . . . . . 7
⊢ (𝜑 → (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍))) |
| 299 | 245, 56, 131 | ledivmul2d 11926 |
. . . . . . 7
⊢ (𝜑 → (((2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) ↔ (2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)))) |
| 300 | 298, 299 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → ((2 · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
| 301 | 237, 300 | eqbrtrrd 4677 |
. . . . 5
⊢ (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
| 302 | 147, 56, 57, 301 | leadd1dd 10641 |
. . . 4
⊢ (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) + 𝐶)) |
| 303 | 25, 148, 58, 231, 302 | letrd 10194 |
. . 3
⊢ (𝜑 → ((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) + 𝐶)) |
| 304 | | remulcl 10021 |
. . . . . . . . 9
⊢ ((𝑈 ∈ ℝ ∧ 3 ∈
ℝ) → (𝑈 ·
3) ∈ ℝ) |
| 305 | 26, 27, 304 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 · 3) ∈
ℝ) |
| 306 | 305, 57 | readdcld 10069 |
. . . . . . 7
⊢ (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ) |
| 307 | 16 | simp3d 1075 |
. . . . . . . 8
⊢ (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
| 308 | 307 | simp3d 1075 |
. . . . . . 7
⊢ (𝜑 → ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) |
| 309 | 306, 54, 125, 308 | leadd2dd 10642 |
. . . . . 6
⊢ (𝜑 → ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)) ≤ ((𝑈 · (log‘𝑍)) + (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
| 310 | 28 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → 3 ∈
ℂ) |
| 311 | 59, 61, 310 | adddid 10064 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 · ((log‘𝑍) + 3)) = ((𝑈 · (log‘𝑍)) + (𝑈 · 3))) |
| 312 | 311 | oveq1d 6665 |
. . . . . . 7
⊢ (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶)) |
| 313 | 125 | recnd 10068 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℂ) |
| 314 | 59, 310 | mulcld 10060 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 · 3) ∈
ℂ) |
| 315 | 13 | rpcnd 11874 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 316 | 313, 314,
315 | addassd 10062 |
. . . . . . 7
⊢ (𝜑 → (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶))) |
| 317 | 312, 316 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶))) |
| 318 | 285 | 2timesd 11275 |
. . . . . . . 8
⊢ (𝜑 → (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) = ((((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) + (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
| 319 | 318 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) + ((((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) + (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
| 320 | 313, 285,
285 | nppcan3d 10419 |
. . . . . . 7
⊢ (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) + ((((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)) + (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
| 321 | 319, 320 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
| 322 | 309, 317,
321 | 3brtr4d 4685 |
. . . . 5
⊢ (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
| 323 | 30, 57 | readdcld 10069 |
. . . . . 6
⊢ (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ∈ ℝ) |
| 324 | 323, 55, 126 | lesubaddd 10624 |
. . . . 5
⊢ (𝜑 → ((((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) ↔ ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))))) |
| 325 | 322, 324 | mpbird 247 |
. . . 4
⊢ (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
| 326 | 282, 315,
283 | addsubd 10413 |
. . . 4
⊢ (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) + 𝐶)) |
| 327 | 325, 326,
124 | 3brtr3d 4684 |
. . 3
⊢ (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍))) |
| 328 | 25, 58, 127, 303, 327 | letrd 10194 |
. 2
⊢ (𝜑 → ((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍))) |
| 329 | | 3z 11410 |
. . . . . . 7
⊢ 3 ∈
ℤ |
| 330 | | rpexpcl 12879 |
. . . . . . 7
⊢ ((𝑈 ∈ ℝ+
∧ 3 ∈ ℤ) → (𝑈↑3) ∈
ℝ+) |
| 331 | 7, 329, 330 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → (𝑈↑3) ∈
ℝ+) |
| 332 | 96, 331 | rpmulcld 11888 |
. . . . 5
⊢ (𝜑 → (𝐹 · (𝑈↑3)) ∈
ℝ+) |
| 333 | 332 | rpred 11872 |
. . . 4
⊢ (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ) |
| 334 | 26, 333 | resubcld 10458 |
. . 3
⊢ (𝜑 → (𝑈 − (𝐹 · (𝑈↑3))) ∈ ℝ) |
| 335 | 23, 334, 131 | lemul1d 11915 |
. 2
⊢ (𝜑 → ((abs‘((𝑅‘𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ((abs‘((𝑅‘𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))) |
| 336 | 328, 335 | mpbird 247 |
1
⊢ (𝜑 → (abs‘((𝑅‘𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |