MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomfallfaclem2 Structured version   Visualization version   Unicode version

Theorem binomfallfaclem2 14771
Description: Lemma for binomfallfac 14772. Inductive step. (Contributed by Scott Fenton, 13-Mar-2018.)
Hypotheses
Ref Expression
binomfallfaclem.1  |-  ( ph  ->  A  e.  CC )
binomfallfaclem.2  |-  ( ph  ->  B  e.  CC )
binomfallfaclem.3  |-  ( ph  ->  N  e.  NN0 )
binomfallfaclem.4  |-  ( ps 
->  ( ( A  +  B ) FallFac  N )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) ) )
Assertion
Ref Expression
binomfallfaclem2  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) FallFac  ( N  + 
1 ) )  = 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) )
Distinct variable groups:    ph, k    k, N    A, k    B, k
Allowed substitution hint:    ps( k)

Proof of Theorem binomfallfaclem2
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 binomfallfaclem.3 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
2 elfzelz 12342 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
3 bccl 13109 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
41, 2, 3syl2an 494 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( N  _C  k )  e. 
NN0 )
54nn0cnd 11353 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( N  _C  k )  e.  CC )
6 binomfallfaclem.1 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
7 fznn0sub 12373 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
8 fallfaccl 14747 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A FallFac  ( N  -  k ) )  e.  CC )
96, 7, 8syl2an 494 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A FallFac  ( N  -  k
) )  e.  CC )
10 binomfallfaclem.2 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
11 elfznn0 12433 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
12 fallfaccl 14747 . . . . . . . 8  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B FallFac  k )  e.  CC )
1310, 11, 12syl2an 494 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( B FallFac  k )  e.  CC )
149, 13mulcld 10060 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) )  e.  CC )
156, 10addcld 10059 . . . . . . . 8  |-  ( ph  ->  ( A  +  B
)  e.  CC )
161nn0cnd 11353 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
1715, 16subcld 10392 . . . . . . 7  |-  ( ph  ->  ( ( A  +  B )  -  N
)  e.  CC )
1817adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A  +  B
)  -  N )  e.  CC )
195, 14, 18mulassd 10063 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) )  x.  ( ( A  +  B )  -  N
) )  =  ( ( N  _C  k
)  x.  ( ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) )  x.  (
( A  +  B
)  -  N ) ) ) )
207nn0cnd 11353 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  CC )
21 subcl 10280 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  CC )  ->  ( A  -  ( N  -  k
) )  e.  CC )
226, 20, 21syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A  -  ( N  -  k ) )  e.  CC )
2311nn0cnd 11353 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  CC )
24 subcl 10280 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  k  e.  CC )  ->  ( B  -  k
)  e.  CC )
2510, 23, 24syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( B  -  k )  e.  CC )
2614, 22, 25adddid 10064 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( ( A  -  ( N  -  k
) )  +  ( B  -  k ) ) )  =  ( ( ( ( A FallFac 
( N  -  k
) )  x.  ( B FallFac  k ) )  x.  ( A  -  ( N  -  k )
) )  +  ( ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( B  -  k
) ) ) )
276adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
2816adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  CC )
2927, 28subcld 10392 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A  -  N )  e.  CC )
3023adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
3110adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  B  e.  CC )
3229, 30, 31ppncand 10432 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A  -  N )  +  k )  +  ( B  -  k ) )  =  ( ( A  -  N )  +  B ) )
3327, 28, 30subsubd 10420 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A  -  ( N  -  k ) )  =  ( ( A  -  N )  +  k ) )
3433oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A  -  ( N  -  k )
)  +  ( B  -  k ) )  =  ( ( ( A  -  N )  +  k )  +  ( B  -  k
) ) )
3527, 31, 28addsubd 10413 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A  +  B
)  -  N )  =  ( ( A  -  N )  +  B ) )
3632, 34, 353eqtr4d 2666 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A  -  ( N  -  k )
)  +  ( B  -  k ) )  =  ( ( A  +  B )  -  N ) )
3736oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( ( A  -  ( N  -  k
) )  +  ( B  -  k ) ) )  =  ( ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( ( A  +  B )  -  N
) ) )
389, 13, 22mul32d 10246 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( A  -  ( N  -  k )
) )  =  ( ( ( A FallFac  ( N  -  k )
)  x.  ( A  -  ( N  -  k ) ) )  x.  ( B FallFac  k
) ) )
39 1cnd 10056 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  1  e.  CC )
4028, 39, 30addsubd 10413 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  +  1 )  -  k )  =  ( ( N  -  k )  +  1 ) )
4140oveq2d 6666 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A FallFac  ( ( N  + 
1 )  -  k
) )  =  ( A FallFac  ( ( N  -  k )  +  1 ) ) )
42 fallfacp1 14761 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A FallFac  ( ( N  -  k )  +  1 ) )  =  ( ( A FallFac 
( N  -  k
) )  x.  ( A  -  ( N  -  k ) ) ) )
436, 7, 42syl2an 494 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A FallFac  ( ( N  -  k )  +  1 ) )  =  ( ( A FallFac  ( N  -  k ) )  x.  ( A  -  ( N  -  k
) ) ) )
4441, 43eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A FallFac  ( ( N  + 
1 )  -  k
) )  =  ( ( A FallFac  ( N  -  k ) )  x.  ( A  -  ( N  -  k
) ) ) )
4544oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) )  =  ( ( ( A FallFac  ( N  -  k )
)  x.  ( A  -  ( N  -  k ) ) )  x.  ( B FallFac  k
) ) )
4638, 45eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( A  -  ( N  -  k )
) )  =  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )
479, 13, 25mulassd 10063 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( B  -  k
) )  =  ( ( A FallFac  ( N  -  k ) )  x.  ( ( B FallFac 
k )  x.  ( B  -  k )
) ) )
48 fallfacp1 14761 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B FallFac  ( k  +  1 ) )  =  ( ( B FallFac 
k )  x.  ( B  -  k )
) )
4910, 11, 48syl2an 494 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( B FallFac  ( k  +  1 ) )  =  ( ( B FallFac  k )  x.  ( B  -  k
) ) )
5049oveq2d 6666 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) )  =  ( ( A FallFac  ( N  -  k ) )  x.  ( ( B FallFac 
k )  x.  ( B  -  k )
) ) )
5147, 50eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( B  -  k
) )  =  ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) )
5246, 51oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( ( A FallFac 
( N  -  k
) )  x.  ( B FallFac  k ) )  x.  ( A  -  ( N  -  k )
) )  +  ( ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( B  -  k
) ) )  =  ( ( ( A FallFac 
( ( N  + 
1 )  -  k
) )  x.  ( B FallFac  k ) )  +  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) )
5326, 37, 523eqtr3d 2664 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) )  x.  ( ( A  +  B )  -  N
) )  =  ( ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) )  +  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) )
5453oveq2d 6666 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) )  x.  (
( A  +  B
)  -  N ) ) )  =  ( ( N  _C  k
)  x.  ( ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) )  +  ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) ) ) )
551nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
56 uzid 11702 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
57 peano2uz 11741 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
58 fzss2 12381 . . . . . . . . . 10  |-  ( ( N  +  1 )  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... ( N  +  1 ) ) )
5955, 56, 57, 584syl 19 . . . . . . . . 9  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... ( N  + 
1 ) ) )
6059sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
61 fznn0sub 12373 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  +  1 )  -  k )  e.  NN0 )
62 fallfaccl 14747 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( N  + 
1 )  -  k
)  e.  NN0 )  ->  ( A FallFac  ( ( N  +  1 )  -  k ) )  e.  CC )
636, 61, 62syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( A FallFac  ( ( N  + 
1 )  -  k
) )  e.  CC )
6460, 63syldan 487 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A FallFac  ( ( N  + 
1 )  -  k
) )  e.  CC )
6564, 13mulcld 10060 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) )  e.  CC )
66 peano2nn0 11333 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
6711, 66syl 17 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  (
k  +  1 )  e.  NN0 )
68 fallfaccl 14747 . . . . . . . 8  |-  ( ( B  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( B FallFac  ( k  +  1 ) )  e.  CC )
6910, 67, 68syl2an 494 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( B FallFac  ( k  +  1 ) )  e.  CC )
709, 69mulcld 10060 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) )  e.  CC )
715, 65, 70adddid 10064 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) )  +  ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) ) )  =  ( ( ( N  _C  k )  x.  ( ( A FallFac 
( ( N  + 
1 )  -  k
) )  x.  ( B FallFac  k ) ) )  +  ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) ) )
7219, 54, 713eqtrd 2660 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) )  x.  ( ( A  +  B )  -  N
) )  =  ( ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  +  ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) ) ) )
7372sumeq2dv 14433 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) ) )  x.  ( ( A  +  B )  -  N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) ) )
7473adantr 481 . 2  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) ) )  x.  ( ( A  +  B )  -  N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) ) )
7515, 1fallfacp1d 14763 . . . 4  |-  ( ph  ->  ( ( A  +  B ) FallFac  ( N  + 
1 ) )  =  ( ( ( A  +  B ) FallFac  N
)  x.  ( ( A  +  B )  -  N ) ) )
76 binomfallfaclem.4 . . . . 5  |-  ( ps 
->  ( ( A  +  B ) FallFac  N )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) ) )
7776oveq1d 6665 . . . 4  |-  ( ps 
->  ( ( ( A  +  B ) FallFac  N
)  x.  ( ( A  +  B )  -  N ) )  =  ( sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) ) )  x.  ( ( A  +  B )  -  N ) ) )
7875, 77sylan9eq 2676 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) FallFac  ( N  + 
1 ) )  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) )  x.  ( ( A  +  B )  -  N
) ) )
79 fzfid 12772 . . . . 5  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
805, 14mulcld 10060 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k )
) )  e.  CC )
8179, 17, 80fsummulc1 14517 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) )  x.  ( ( A  +  B )  -  N
) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) )  x.  ( ( A  +  B )  -  N
) ) )
8281adantr 481 . . 3  |-  ( (
ph  /\  ps )  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) )  x.  ( ( A  +  B )  -  N
) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  k
) ) )  x.  ( ( A  +  B )  -  N
) ) )
8378, 82eqtrd 2656 . 2  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) FallFac  ( N  + 
1 ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
k ) ) )  x.  ( ( A  +  B )  -  N ) ) )
84 elfzelz 12342 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  ZZ )
85 bcpasc 13108 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  =  ( ( N  +  1 )  _C  k ) )
861, 84, 85syl2an 494 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  k
)  +  ( N  _C  ( k  - 
1 ) ) )  =  ( ( N  +  1 )  _C  k ) )
8786oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  =  ( ( ( N  + 
1 )  _C  k
)  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) ) )
881, 84, 3syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  k )  e. 
NN0 )
8988nn0cnd 11353 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  k )  e.  CC )
90 peano2zm 11420 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
9184, 90syl 17 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  (
k  -  1 )  e.  ZZ )
92 bccl 13109 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( N  _C  ( k  -  1 ) )  e.  NN0 )
931, 91, 92syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e. 
NN0 )
9493nn0cnd 11353 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e.  CC )
95 elfznn0 12433 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  NN0 )
9610, 95, 12syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( B FallFac  k )  e.  CC )
9763, 96mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) )  e.  CC )
9889, 94, 97adddird 10065 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  _C  k )  +  ( N  _C  ( k  -  1 ) ) )  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  =  ( ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) ) )
9987, 98eqtr3d 2658 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( N  + 
1 )  _C  k
)  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  =  ( ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  +  ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) ) )
10099sumeq2dv 14433 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  = 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) ) ) )
101 nn0uz 11722 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
1021, 101syl6eleq 2711 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
10389, 97mulcld 10060 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  e.  CC )
104 oveq2 6658 . . . . . . . . 9  |-  ( k  =  ( N  + 
1 )  ->  ( N  _C  k )  =  ( N  _C  ( N  +  1 ) ) )
105 oveq2 6658 . . . . . . . . . . 11  |-  ( k  =  ( N  + 
1 )  ->  (
( N  +  1 )  -  k )  =  ( ( N  +  1 )  -  ( N  +  1
) ) )
106105oveq2d 6666 . . . . . . . . . 10  |-  ( k  =  ( N  + 
1 )  ->  ( A FallFac  ( ( N  + 
1 )  -  k
) )  =  ( A FallFac  ( ( N  +  1 )  -  ( N  +  1
) ) ) )
107 oveq2 6658 . . . . . . . . . 10  |-  ( k  =  ( N  + 
1 )  ->  ( B FallFac  k )  =  ( B FallFac  ( N  + 
1 ) ) )
108106, 107oveq12d 6668 . . . . . . . . 9  |-  ( k  =  ( N  + 
1 )  ->  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) )  =  ( ( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  x.  ( B FallFac  ( N  +  1 ) ) ) )
109104, 108oveq12d 6668 . . . . . . . 8  |-  ( k  =  ( N  + 
1 )  ->  (
( N  _C  k
)  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  =  ( ( N  _C  ( N  +  1 ) )  x.  ( ( A FallFac  ( ( N  +  1 )  -  ( N  +  1
) ) )  x.  ( B FallFac  ( N  +  1 ) ) ) ) )
110102, 103, 109fsump1 14487 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  +  ( ( N  _C  ( N  +  1
) )  x.  (
( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  x.  ( B FallFac  ( N  +  1 ) ) ) ) ) )
111 peano2nn0 11333 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
1121, 111syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
113112nn0zd 11480 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
1141nn0red 11352 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  RR )
115114ltp1d 10954 . . . . . . . . . . . 12  |-  ( ph  ->  N  <  ( N  +  1 ) )
116115olcd 408 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  + 
1 )  <  0  \/  N  <  ( N  +  1 ) ) )
117 bcval4 13094 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( N  +  1
)  e.  ZZ  /\  ( ( N  + 
1 )  <  0  \/  N  <  ( N  +  1 ) ) )  ->  ( N  _C  ( N  +  1 ) )  =  0 )
1181, 113, 116, 117syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( N  _C  ( N  +  1 ) )  =  0 )
119118oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( N  _C  ( N  +  1
) )  x.  (
( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  x.  ( B FallFac  ( N  +  1 ) ) ) )  =  ( 0  x.  (
( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  x.  ( B FallFac  ( N  +  1 ) ) ) ) )
120112nn0cnd 11353 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  +  1 )  e.  CC )
121120subidd 10380 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( N  + 
1 )  -  ( N  +  1 ) )  =  0 )
122121oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  =  ( A FallFac  0
) )
123 0nn0 11307 . . . . . . . . . . . . 13  |-  0  e.  NN0
124 fallfaccl 14747 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  0  e.  NN0 )  -> 
( A FallFac  0 )  e.  CC )
1256, 123, 124sylancl 694 . . . . . . . . . . . 12  |-  ( ph  ->  ( A FallFac  0 )  e.  CC )
126122, 125eqeltrd 2701 . . . . . . . . . . 11  |-  ( ph  ->  ( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  e.  CC )
127 fallfaccl 14747 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  ( N  +  1
)  e.  NN0 )  ->  ( B FallFac  ( N  +  1 ) )  e.  CC )
12810, 112, 127syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( B FallFac  ( N  +  1 ) )  e.  CC )
129126, 128mulcld 10060 . . . . . . . . . 10  |-  ( ph  ->  ( ( A FallFac  (
( N  +  1 )  -  ( N  +  1 ) ) )  x.  ( B FallFac 
( N  +  1 ) ) )  e.  CC )
130129mul02d 10234 . . . . . . . . 9  |-  ( ph  ->  ( 0  x.  (
( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  x.  ( B FallFac  ( N  +  1 ) ) ) )  =  0 )
131119, 130eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( N  _C  ( N  +  1
) )  x.  (
( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  x.  ( B FallFac  ( N  +  1 ) ) ) )  =  0 )
132131oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  +  ( ( N  _C  ( N  +  1
) )  x.  (
( A FallFac  ( ( N  +  1 )  -  ( N  + 
1 ) ) )  x.  ( B FallFac  ( N  +  1 ) ) ) ) )  =  ( sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  0 ) )
13360, 103syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  e.  CC )
13479, 133fsumcl 14464 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  e.  CC )
135134addid1d 10236 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  +  0 )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) ) )
136110, 132, 1353eqtrd 2660 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) )
137112, 101syl6eleq 2711 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
0 ) )
13894, 97mulcld 10060 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  e.  CC )
139 oveq1 6657 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
k  -  1 )  =  ( 0  -  1 ) )
140 df-neg 10269 . . . . . . . . . . 11  |-  -u 1  =  ( 0  -  1 )
141139, 140syl6eqr 2674 . . . . . . . . . 10  |-  ( k  =  0  ->  (
k  -  1 )  =  -u 1 )
142141oveq2d 6666 . . . . . . . . 9  |-  ( k  =  0  ->  ( N  _C  ( k  - 
1 ) )  =  ( N  _C  -u 1
) )
143 oveq2 6658 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( N  +  1 )  -  k )  =  ( ( N  +  1 )  - 
0 ) )
144143oveq2d 6666 . . . . . . . . . 10  |-  ( k  =  0  ->  ( A FallFac  ( ( N  + 
1 )  -  k
) )  =  ( A FallFac  ( ( N  +  1 )  - 
0 ) ) )
145 oveq2 6658 . . . . . . . . . 10  |-  ( k  =  0  ->  ( B FallFac  k )  =  ( B FallFac  0 ) )
146144, 145oveq12d 6668 . . . . . . . . 9  |-  ( k  =  0  ->  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) )  =  ( ( A FallFac  ( ( N  +  1 )  -  0 ) )  x.  ( B FallFac  0
) ) )
147142, 146oveq12d 6668 . . . . . . . 8  |-  ( k  =  0  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  =  ( ( N  _C  -u 1
)  x.  ( ( A FallFac  ( ( N  +  1 )  - 
0 ) )  x.  ( B FallFac  0 ) ) ) )
148137, 138, 147fsum1p 14482 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  =  ( ( ( N  _C  -u 1 )  x.  ( ( A FallFac  (
( N  +  1 )  -  0 ) )  x.  ( B FallFac 
0 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) ) )
149 neg1z 11413 . . . . . . . . . . . 12  |-  -u 1  e.  ZZ
150 neg1lt0 11127 . . . . . . . . . . . . 13  |-  -u 1  <  0
151150orci 405 . . . . . . . . . . . 12  |-  ( -u
1  <  0  \/  N  <  -u 1 )
152 bcval4 13094 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  -u 1  e.  ZZ  /\  ( -u 1  <  0  \/  N  <  -u 1
) )  ->  ( N  _C  -u 1 )  =  0 )
153149, 151, 152mp3an23 1416 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  _C  -u 1 )  =  0 )
1541, 153syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( N  _C  -u 1
)  =  0 )
155154oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( N  _C  -u 1 )  x.  (
( A FallFac  ( ( N  +  1 )  -  0 ) )  x.  ( B FallFac  0
) ) )  =  ( 0  x.  (
( A FallFac  ( ( N  +  1 )  -  0 ) )  x.  ( B FallFac  0
) ) ) )
156120subid1d 10381 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( N  + 
1 )  -  0 )  =  ( N  +  1 ) )
157156oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( A FallFac  ( ( N  +  1 )  -  0 ) )  =  ( A FallFac  ( N  +  1 ) ) )
158 fallfaccl 14747 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN0 )  ->  ( A FallFac  ( N  +  1 ) )  e.  CC )
1596, 112, 158syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( A FallFac  ( N  +  1 ) )  e.  CC )
160157, 159eqeltrd 2701 . . . . . . . . . . 11  |-  ( ph  ->  ( A FallFac  ( ( N  +  1 )  -  0 ) )  e.  CC )
161 fallfaccl 14747 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  0  e.  NN0 )  -> 
( B FallFac  0 )  e.  CC )
16210, 123, 161sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( B FallFac  0 )  e.  CC )
163160, 162mulcld 10060 . . . . . . . . . 10  |-  ( ph  ->  ( ( A FallFac  (
( N  +  1 )  -  0 ) )  x.  ( B FallFac 
0 ) )  e.  CC )
164163mul02d 10234 . . . . . . . . 9  |-  ( ph  ->  ( 0  x.  (
( A FallFac  ( ( N  +  1 )  -  0 ) )  x.  ( B FallFac  0
) ) )  =  0 )
165155, 164eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( N  _C  -u 1 )  x.  (
( A FallFac  ( ( N  +  1 )  -  0 ) )  x.  ( B FallFac  0
) ) )  =  0 )
166 1zzd 11408 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  ZZ )
167 0zd 11389 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  ZZ )
1686, 10, 1binomfallfaclem1 14770 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
( N  _C  j
)  x.  ( ( A FallFac  ( N  -  j ) )  x.  ( B FallFac  ( j  +  1 ) ) ) )  e.  CC )
169 oveq2 6658 . . . . . . . . . . . 12  |-  ( j  =  ( k  - 
1 )  ->  ( N  _C  j )  =  ( N  _C  (
k  -  1 ) ) )
170 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( j  =  ( k  - 
1 )  ->  ( N  -  j )  =  ( N  -  ( k  -  1 ) ) )
171170oveq2d 6666 . . . . . . . . . . . . 13  |-  ( j  =  ( k  - 
1 )  ->  ( A FallFac  ( N  -  j
) )  =  ( A FallFac  ( N  -  ( k  -  1 ) ) ) )
172 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( j  =  ( k  - 
1 )  ->  (
j  +  1 )  =  ( ( k  -  1 )  +  1 ) )
173172oveq2d 6666 . . . . . . . . . . . . 13  |-  ( j  =  ( k  - 
1 )  ->  ( B FallFac  ( j  +  1 ) )  =  ( B FallFac  ( ( k  -  1 )  +  1 ) ) )
174171, 173oveq12d 6668 . . . . . . . . . . . 12  |-  ( j  =  ( k  - 
1 )  ->  (
( A FallFac  ( N  -  j ) )  x.  ( B FallFac  (
j  +  1 ) ) )  =  ( ( A FallFac  ( N  -  ( k  - 
1 ) ) )  x.  ( B FallFac  (
( k  -  1 )  +  1 ) ) ) )
175169, 174oveq12d 6668 . . . . . . . . . . 11  |-  ( j  =  ( k  - 
1 )  ->  (
( N  _C  j
)  x.  ( ( A FallFac  ( N  -  j ) )  x.  ( B FallFac  ( j  +  1 ) ) ) )  =  ( ( N  _C  (
k  -  1 ) )  x.  ( ( A FallFac  ( N  -  ( k  -  1 ) ) )  x.  ( B FallFac  ( (
k  -  1 )  +  1 ) ) ) ) )
176166, 167, 55, 168, 175fsumshft 14512 . . . . . . . . . 10  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N ) ( ( N  _C  j )  x.  (
( A FallFac  ( N  -  j ) )  x.  ( B FallFac  (
j  +  1 ) ) ) )  = 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( N  -  ( k  - 
1 ) ) )  x.  ( B FallFac  (
( k  -  1 )  +  1 ) ) ) ) )
17716adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  N  e.  CC )
178 elfzelz 12342 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  k  e.  ZZ )
179178adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  ZZ )
180179zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  k  e.  CC )
181 1cnd 10056 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  1  e.  CC )
182177, 180, 181subsub3d 10422 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( N  -  ( k  -  1 ) )  =  ( ( N  +  1 )  -  k ) )
183182oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( A FallFac  ( N  -  (
k  -  1 ) ) )  =  ( A FallFac  ( ( N  +  1 )  -  k ) ) )
184180, 181npcand 10396 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( k  -  1 )  +  1 )  =  k )
185184oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  ( B FallFac  ( ( k  - 
1 )  +  1 ) )  =  ( B FallFac  k ) )
186183, 185oveq12d 6668 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( A FallFac  ( N  -  ( k  - 
1 ) ) )  x.  ( B FallFac  (
( k  -  1 )  +  1 ) ) )  =  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )
187186oveq2d 6666 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( A FallFac  ( N  -  ( k  -  1 ) ) )  x.  ( B FallFac  ( (
k  -  1 )  +  1 ) ) ) )  =  ( ( N  _C  (
k  -  1 ) )  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) ) )
188187sumeq2dv 14433 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( N  -  ( k  - 
1 ) ) )  x.  ( B FallFac  (
( k  -  1 )  +  1 ) ) ) )  = 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) )
189176, 188eqtr2d 2657 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  = 
sum_ j  e.  ( 0 ... N ) ( ( N  _C  j )  x.  (
( A FallFac  ( N  -  j ) )  x.  ( B FallFac  (
j  +  1 ) ) ) ) )
190 oveq2 6658 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( N  _C  k )  =  ( N  _C  j
) )
191 oveq2 6658 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( N  -  k )  =  ( N  -  j ) )
192191oveq2d 6666 . . . . . . . . . . . 12  |-  ( k  =  j  ->  ( A FallFac  ( N  -  k
) )  =  ( A FallFac  ( N  -  j ) ) )
193 oveq1 6657 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
k  +  1 )  =  ( j  +  1 ) )
194193oveq2d 6666 . . . . . . . . . . . 12  |-  ( k  =  j  ->  ( B FallFac  ( k  +  1 ) )  =  ( B FallFac  ( j  +  1 ) ) )
195192, 194oveq12d 6668 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) )  =  ( ( A FallFac  ( N  -  j ) )  x.  ( B FallFac  (
j  +  1 ) ) ) )
196190, 195oveq12d 6668 . . . . . . . . . 10  |-  ( k  =  j  ->  (
( N  _C  k
)  x.  ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  ( k  +  1 ) ) ) )  =  ( ( N  _C  j
)  x.  ( ( A FallFac  ( N  -  j ) )  x.  ( B FallFac  ( j  +  1 ) ) ) ) )
197196cbvsumv 14426 . . . . . . . . 9  |-  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) )  =  sum_ j  e.  ( 0 ... N ) ( ( N  _C  j )  x.  (
( A FallFac  ( N  -  j ) )  x.  ( B FallFac  (
j  +  1 ) ) ) )
198189, 197syl6eqr 2674 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) ) )
199165, 198oveq12d 6668 . . . . . . 7  |-  ( ph  ->  ( ( ( N  _C  -u 1 )  x.  ( ( A FallFac  (
( N  +  1 )  -  0 ) )  x.  ( B FallFac 
0 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) )  =  ( 0  + 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) ) ) )
2006, 10, 1binomfallfaclem1 14770 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( N  _C  k
)  x.  ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  ( k  +  1 ) ) ) )  e.  CC )
20179, 200fsumcl 14464 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) )  e.  CC )
202201addid2d 10237 . . . . . . 7  |-  ( ph  ->  ( 0  +  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  ( k  +  1 ) ) ) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) ) )
203148, 199, 2023eqtrd 2660 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) ) )
204136, 203oveq12d 6668 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  + 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) )  =  ( sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A FallFac  ( N  -  k ) )  x.  ( B FallFac  (
k  +  1 ) ) ) ) ) )
205 fzfid 12772 . . . . . 6  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  e.  Fin )
206205, 103, 138fsumadd 14470 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  k
)  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  +  sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( N  _C  (
k  -  1 ) )  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) ) ) )
20779, 133, 200fsumadd 14470 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) )  =  ( sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k )
) )  +  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A FallFac  ( N  -  k ) )  x.  ( B FallFac  ( k  +  1 ) ) ) ) ) )
208204, 206, 2073eqtr4d 2666 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) ) )  =  sum_ k  e.  ( 0 ... N
) ( ( ( N  _C  k )  x.  ( ( A FallFac 
( ( N  + 
1 )  -  k
) )  x.  ( B FallFac  k ) ) )  +  ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) ) )
209100, 208eqtrd 2656 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) ) )
210209adantr 481 . 2  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( N  _C  k )  x.  ( ( A FallFac  (
( N  +  1 )  -  k ) )  x.  ( B FallFac 
k ) ) )  +  ( ( N  _C  k )  x.  ( ( A FallFac  ( N  -  k )
)  x.  ( B FallFac 
( k  +  1 ) ) ) ) ) )
21174, 83, 2103eqtr4d 2666 1  |-  ( (
ph  /\  ps )  ->  ( ( A  +  B ) FallFac  ( N  + 
1 ) )  = 
sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  (
( A FallFac  ( ( N  +  1 )  -  k ) )  x.  ( B FallFac  k
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    _C cbc 13089   sum_csu 14416   FallFac cfallfac 14735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-fallfac 14738
This theorem is referenced by:  binomfallfac  14772
  Copyright terms: Public domain W3C validator