MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumadd Structured version   Visualization version   Unicode version

Theorem fsumadd 14470
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumadd.1  |-  ( ph  ->  A  e.  Fin )
fsumadd.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumadd.3  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
Assertion
Ref Expression
fsumadd  |-  ( ph  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fsumadd
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 10211 . . . . 5  |-  ( 0  +  0 )  =  0
2 sum0 14452 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
3 sum0 14452 . . . . . 6  |-  sum_ k  e.  (/)  C  =  0
42, 3oveq12i 6662 . . . . 5  |-  ( sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C )  =  ( 0  +  0 )
5 sum0 14452 . . . . 5  |-  sum_ k  e.  (/)  ( B  +  C )  =  0
61, 4, 53eqtr4ri 2655 . . . 4  |-  sum_ k  e.  (/)  ( B  +  C )  =  (
sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C )
7 sumeq1 14419 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( B  +  C )  =  sum_ k  e.  (/)  ( B  +  C ) )
8 sumeq1 14419 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
9 sumeq1 14419 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  C  =  sum_ k  e.  (/)  C )
108, 9oveq12d 6668 . . . 4  |-  ( A  =  (/)  ->  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C )  =  (
sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C ) )
116, 7, 103eqtr4a 2682 . . 3  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
1211a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
13 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
14 nnuz 11723 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1513, 14syl6eleq 2711 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
16 fsumadd.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1716adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
18 eqid 2622 . . . . . . . . . . 11  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
1917, 18fmptd 6385 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
20 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
21 f1of 6137 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
2220, 21syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
23 fco 6058 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
2419, 22, 23syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
2524ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  e.  CC )
26 fsumadd.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2726adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  C  e.  CC )
28 eqid 2622 . . . . . . . . . . 11  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
2927, 28fmptd 6385 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  C ) : A --> CC )
30 fco 6058 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  C ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  C )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
3129, 22, 30syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  C )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
3231ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  e.  CC )
3322ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  n
)  e.  A )
34 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( B  +  C )  e. 
_V
35 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( k  e.  A  |->  ( B  +  C ) )  =  ( k  e.  A  |->  ( B  +  C ) )
3635fvmpt2 6291 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  ( B  +  C
)  e.  _V )  ->  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( B  +  C ) )
3734, 36mpan2 707 . . . . . . . . . . . . . 14  |-  ( k  e.  A  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( B  +  C ) )
3837adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( B  +  C ) )
39 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
4018fvmpt2 6291 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
4139, 16, 40syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
4228fvmpt2 6291 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  k )  =  C )
4339, 26, 42syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  C ) `  k
)  =  C )
4441, 43oveq12d 6668 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  =  ( B  +  C ) )
4538, 44eqtr4d 2659 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( ( ( k  e.  A  |->  B ) `  k
)  +  ( ( k  e.  A  |->  C ) `  k ) ) )
4645ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) ) )
4746ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) ) )
48 nffvmpt1 6199 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) )
49 nffvmpt1 6199 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  n
) )
50 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ k  +
51 nffvmpt1 6199 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  C ) `  ( f `  n
) )
5249, 50, 51nfov 6676 . . . . . . . . . . . 12  |-  F/_ k
( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  +  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) )
5348, 52nfeq 2776 . . . . . . . . . . 11  |-  F/ k ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  +  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
54 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) ) )
55 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
56 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  k
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
5755, 56oveq12d 6668 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  +  ( ( k  e.  A  |->  C ) `  (
f `  n )
) ) )
5854, 57eqeq12d 2637 . . . . . . . . . . 11  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  <->  ( (
k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `
 n ) )  +  ( ( k  e.  A  |->  C ) `
 ( f `  n ) ) ) ) )
5953, 58rspc 3303 . . . . . . . . . 10  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  (
f `  n )
)  =  ( ( ( k  e.  A  |->  B ) `  (
f `  n )
)  +  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) ) ) )
6033, 47, 59sylc 65 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  +  ( ( k  e.  A  |->  C ) `  (
f `  n )
) ) )
61 fvco3 6275 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  +  C
) ) `  (
f `  n )
) )
6222, 61sylan 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  +  C
) ) `  (
f `  n )
) )
63 fvco3 6275 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6422, 63sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
65 fvco3 6275 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
6622, 65sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
6764, 66oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( ( k  e.  A  |->  B )  o.  f ) `
 n )  +  ( ( ( k  e.  A  |->  C )  o.  f ) `  n ) )  =  ( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  +  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) ) )
6860, 62, 673eqtr4d 2666 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  =  ( ( ( ( k  e.  A  |->  B )  o.  f ) `  n )  +  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ) )
6915, 25, 32, 68seradd 12843 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq 1 (  +  , 
( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) ) `  ( # `  A ) )  =  ( (  seq 1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) )  +  (  seq 1 (  +  ,  ( ( k  e.  A  |->  C )  o.  f ) ) `
 ( # `  A
) ) ) )
70 fveq2 6191 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  m
)  =  ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) ) )
7117, 27addcld 10059 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  ( B  +  C
)  e.  CC )
7271, 35fmptd 6385 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( B  +  C ) ) : A --> CC )
7372ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( B  +  C ) ) `  m )  e.  CC )
7470, 13, 20, 73, 62fsum 14451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( B  +  C ) ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) ) `  ( # `
 A ) ) )
75 fveq2 6191 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
7619ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
7775, 13, 20, 76, 64fsum 14451 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
78 fveq2 6191 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  m
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
7929ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  C ) `  m )  e.  CC )
8078, 13, 20, 79, 66fsum 14451 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  C )  o.  f
) ) `  ( # `
 A ) ) )
8177, 80oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  +  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m ) )  =  ( (  seq 1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) )  +  (  seq 1 (  +  ,  ( ( k  e.  A  |->  C )  o.  f ) ) `
 ( # `  A
) ) ) )
8269, 74, 813eqtr4d 2666 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( B  +  C ) ) `  m )  =  ( sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  +  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) ) )
83 sumfc 14440 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  ( B  +  C ) ) `  m )  =  sum_ k  e.  A  ( B  +  C
)
84 sumfc 14440 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
85 sumfc 14440 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
8684, 85oveq12i 6662 . . . . . 6  |-  ( sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  +  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C )
8782, 83, 863eqtr3g 2679 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
8887expr 643 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
8988exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
9089expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
91 fsumadd.1 . . 3  |-  ( ph  ->  A  e.  Fin )
92 fz1f1o 14441 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
9391, 92syl 17 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
9412, 90, 93mpjaod 396 1  |-  ( ph  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  fsumsplit  14471  fsumsub  14520  binomlem  14561  binomfallfaclem2  14771  pwp1fsum  15114  pcbc  15604  csbren  23182  trirn  23183  ovollb2lem  23256  ovoliunlem1  23270  itg1addlem5  23467  itgsplit  23602  plyaddlem1  23969  basellem8  24814  logfaclbnd  24947  dchrvmasum2if  25186  mudivsum  25219  logsqvma  25231  selberglem1  25234  selberglem2  25235  selberg  25237  selberg2  25240  selberg3lem1  25246  selberg4  25250  pntsval2  25265  ax5seglem9  25817  finsumvtxdg2ssteplem4  26444  dvnmul  40158  dirkertrigeqlem2  40316  sge0xaddlem1  40650  sge0xaddlem2  40651  hoidmvlelem2  40810  altgsumbcALT  42131
  Copyright terms: Public domain W3C validator