MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndth Structured version   Visualization version   Unicode version

Theorem bndth 22757
Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to  -u F.) (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1  |-  X  = 
U. J
bndth.2  |-  K  =  ( topGen `  ran  (,) )
bndth.3  |-  ( ph  ->  J  e.  Comp )
bndth.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
Assertion
Ref Expression
bndth  |-  ( ph  ->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x )
Distinct variable groups:    x, y, F    y, K    ph, x, y   
x, X, y    x, J, y
Allowed substitution hint:    K( x)

Proof of Theorem bndth
Dummy variables  v  u  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndth.4 . . . . 5  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 bndth.1 . . . . . 6  |-  X  = 
U. J
3 bndth.2 . . . . . . . 8  |-  K  =  ( topGen `  ran  (,) )
4 retopon 22567 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
53, 4eqeltri 2697 . . . . . . 7  |-  K  e.  (TopOn `  RR )
65toponunii 20721 . . . . . 6  |-  RR  =  U. K
72, 6cnf 21050 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> RR )
81, 7syl 17 . . . 4  |-  ( ph  ->  F : X --> RR )
9 frn 6053 . . . 4  |-  ( F : X --> RR  ->  ran 
F  C_  RR )
108, 9syl 17 . . 3  |-  ( ph  ->  ran  F  C_  RR )
11 imassrn 5477 . . . . . 6  |-  ( (,) " ( { -oo }  X.  RR ) ) 
C_  ran  (,)
12 retopbas 22564 . . . . . . . 8  |-  ran  (,)  e. 
TopBases
13 bastg 20770 . . . . . . . 8  |-  ( ran 
(,)  e.  TopBases  ->  ran  (,)  C_  ( topGen `  ran  (,) )
)
1412, 13ax-mp 5 . . . . . . 7  |-  ran  (,)  C_  ( topGen `  ran  (,) )
1514, 3sseqtr4i 3638 . . . . . 6  |-  ran  (,)  C_  K
1611, 15sstri 3612 . . . . 5  |-  ( (,) " ( { -oo }  X.  RR ) ) 
C_  K
17 retop 22565 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  Top
183, 17eqeltri 2697 . . . . . . 7  |-  K  e. 
Top
1918elexi 3213 . . . . . 6  |-  K  e. 
_V
2019elpw2 4828 . . . . 5  |-  ( ( (,) " ( { -oo }  X.  RR ) )  e.  ~P K 
<->  ( (,) " ( { -oo }  X.  RR ) )  C_  K
)
2116, 20mpbir 221 . . . 4  |-  ( (,) " ( { -oo }  X.  RR ) )  e.  ~P K
22 bndth.3 . . . . . 6  |-  ( ph  ->  J  e.  Comp )
23 rncmp 21199 . . . . . 6  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( Kt  ran  F )  e.  Comp )
2422, 1, 23syl2anc 693 . . . . 5  |-  ( ph  ->  ( Kt  ran  F )  e. 
Comp )
256cmpsub 21203 . . . . . 6  |-  ( ( K  e.  Top  /\  ran  F  C_  RR )  ->  ( ( Kt  ran  F
)  e.  Comp  <->  A. u  e.  ~P  K ( ran 
F  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ran  F  C_  U. v
) ) )
2618, 10, 25sylancr 695 . . . . 5  |-  ( ph  ->  ( ( Kt  ran  F
)  e.  Comp  <->  A. u  e.  ~P  K ( ran 
F  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ran  F  C_  U. v
) ) )
2724, 26mpbid 222 . . . 4  |-  ( ph  ->  A. u  e.  ~P  K ( ran  F  C_ 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) ran  F  C_ 
U. v ) )
28 unieq 4444 . . . . . . . 8  |-  ( u  =  ( (,) " ( { -oo }  X.  RR ) )  ->  U. u  =  U. ( (,) " ( { -oo }  X.  RR ) ) )
2911unissi 4461 . . . . . . . . . 10  |-  U. ( (,) " ( { -oo }  X.  RR ) ) 
C_  U. ran  (,)
30 unirnioo 12273 . . . . . . . . . 10  |-  RR  =  U. ran  (,)
3129, 30sseqtr4i 3638 . . . . . . . . 9  |-  U. ( (,) " ( { -oo }  X.  RR ) ) 
C_  RR
32 id 22 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  x  e.  RR )
33 ltp1 10861 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  x  <  ( x  +  1 ) )
34 ressxr 10083 . . . . . . . . . . . . . 14  |-  RR  C_  RR*
35 peano2re 10209 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
3634, 35sseldi 3601 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR* )
37 elioomnf 12268 . . . . . . . . . . . . 13  |-  ( ( x  +  1 )  e.  RR*  ->  ( x  e.  ( -oo (,) ( x  +  1
) )  <->  ( x  e.  RR  /\  x  < 
( x  +  1 ) ) ) )
3836, 37syl 17 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  e.  ( -oo (,) ( x  +  1 ) )  <->  ( x  e.  RR  /\  x  < 
( x  +  1 ) ) ) )
3932, 33, 38mpbir2and 957 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  ( -oo (,) (
x  +  1 ) ) )
40 df-ov 6653 . . . . . . . . . . . 12  |-  ( -oo (,) ( x  +  1 ) )  =  ( (,) `  <. -oo , 
( x  +  1 ) >. )
41 mnfxr 10096 . . . . . . . . . . . . . . . 16  |- -oo  e.  RR*
4241elexi 3213 . . . . . . . . . . . . . . 15  |- -oo  e.  _V
4342snid 4208 . . . . . . . . . . . . . 14  |- -oo  e.  { -oo }
44 opelxpi 5148 . . . . . . . . . . . . . 14  |-  ( ( -oo  e.  { -oo }  /\  ( x  + 
1 )  e.  RR )  ->  <. -oo ,  ( x  +  1 ) >.  e.  ( { -oo }  X.  RR ) )
4543, 35, 44sylancr 695 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  <. -oo , 
( x  +  1 ) >.  e.  ( { -oo }  X.  RR ) )
46 ioof 12271 . . . . . . . . . . . . . . 15  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
47 ffun 6048 . . . . . . . . . . . . . . 15  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
4846, 47ax-mp 5 . . . . . . . . . . . . . 14  |-  Fun  (,)
49 snssi 4339 . . . . . . . . . . . . . . . . 17  |-  ( -oo  e.  RR*  ->  { -oo }  C_ 
RR* )
5041, 49ax-mp 5 . . . . . . . . . . . . . . . 16  |-  { -oo } 
C_  RR*
51 xpss12 5225 . . . . . . . . . . . . . . . 16  |-  ( ( { -oo }  C_  RR* 
/\  RR  C_  RR* )  ->  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* ) )
5250, 34, 51mp2an 708 . . . . . . . . . . . . . . 15  |-  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* )
5346fdmi 6052 . . . . . . . . . . . . . . 15  |-  dom  (,)  =  ( RR*  X.  RR* )
5452, 53sseqtr4i 3638 . . . . . . . . . . . . . 14  |-  ( { -oo }  X.  RR )  C_  dom  (,)
55 funfvima2 6493 . . . . . . . . . . . . . 14  |-  ( ( Fun  (,)  /\  ( { -oo }  X.  RR )  C_  dom  (,) )  ->  ( <. -oo ,  ( x  +  1 )
>.  e.  ( { -oo }  X.  RR )  -> 
( (,) `  <. -oo ,  ( x  + 
1 ) >. )  e.  ( (,) " ( { -oo }  X.  RR ) ) ) )
5648, 54, 55mp2an 708 . . . . . . . . . . . . 13  |-  ( <. -oo ,  ( x  + 
1 ) >.  e.  ( { -oo }  X.  RR )  ->  ( (,) `  <. -oo ,  ( x  +  1 ) >.
)  e.  ( (,) " ( { -oo }  X.  RR ) ) )
5745, 56syl 17 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  ( (,) `  <. -oo ,  ( x  +  1 )
>. )  e.  ( (,) " ( { -oo }  X.  RR ) ) )
5840, 57syl5eqel 2705 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( -oo (,) ( x  + 
1 ) )  e.  ( (,) " ( { -oo }  X.  RR ) ) )
59 elunii 4441 . . . . . . . . . . 11  |-  ( ( x  e.  ( -oo (,) ( x  +  1 ) )  /\  ( -oo (,) ( x  + 
1 ) )  e.  ( (,) " ( { -oo }  X.  RR ) ) )  ->  x  e.  U. ( (,) " ( { -oo }  X.  RR ) ) )
6039, 58, 59syl2anc 693 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  U. ( (,) " ( { -oo }  X.  RR ) ) )
6160ssriv 3607 . . . . . . . . 9  |-  RR  C_  U. ( (,) " ( { -oo }  X.  RR ) )
6231, 61eqssi 3619 . . . . . . . 8  |-  U. ( (,) " ( { -oo }  X.  RR ) )  =  RR
6328, 62syl6eq 2672 . . . . . . 7  |-  ( u  =  ( (,) " ( { -oo }  X.  RR ) )  ->  U. u  =  RR )
6463sseq2d 3633 . . . . . 6  |-  ( u  =  ( (,) " ( { -oo }  X.  RR ) )  ->  ( ran  F  C_  U. u  <->  ran 
F  C_  RR )
)
65 pweq 4161 . . . . . . . 8  |-  ( u  =  ( (,) " ( { -oo }  X.  RR ) )  ->  ~P u  =  ~P ( (,) " ( { -oo }  X.  RR ) ) )
6665ineq1d 3813 . . . . . . 7  |-  ( u  =  ( (,) " ( { -oo }  X.  RR ) )  ->  ( ~P u  i^i  Fin )  =  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )
6766rexeqdv 3145 . . . . . 6  |-  ( u  =  ( (,) " ( { -oo }  X.  RR ) )  ->  ( E. v  e.  ( ~P u  i^i  Fin ) ran  F  C_  U. v  <->  E. v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) ran  F  C_  U. v
) )
6864, 67imbi12d 334 . . . . 5  |-  ( u  =  ( (,) " ( { -oo }  X.  RR ) )  ->  (
( ran  F  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ran  F  C_  U. v
)  <->  ( ran  F  C_  RR  ->  E. v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) ran 
F  C_  U. v
) ) )
6968rspcv 3305 . . . 4  |-  ( ( (,) " ( { -oo }  X.  RR ) )  e.  ~P K  ->  ( A. u  e.  ~P  K ( ran 
F  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ran  F  C_  U. v
)  ->  ( ran  F 
C_  RR  ->  E. v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) ran 
F  C_  U. v
) ) )
7021, 27, 69mpsyl 68 . . 3  |-  ( ph  ->  ( ran  F  C_  RR  ->  E. v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) ran  F  C_  U. v
) )
7110, 70mpd 15 . 2  |-  ( ph  ->  E. v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) ran  F  C_  U. v
)
72 simpr 477 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  ->  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )
73 elin 3796 . . . . . . 7  |-  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  <->  ( v  e.  ~P ( (,) " ( { -oo }  X.  RR ) )  /\  v  e.  Fin ) )
7472, 73sylib 208 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  ->  (
v  e.  ~P ( (,) " ( { -oo }  X.  RR ) )  /\  v  e.  Fin ) )
7574adantrr 753 . . . . 5  |-  ( (
ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v
) )  ->  (
v  e.  ~P ( (,) " ( { -oo }  X.  RR ) )  /\  v  e.  Fin ) )
7675simprd 479 . . . 4  |-  ( (
ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v
) )  ->  v  e.  Fin )
7774simpld 475 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  ->  v  e.  ~P ( (,) " ( { -oo }  X.  RR ) ) )
7877elpwid 4170 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  ->  v  C_  ( (,) " ( { -oo }  X.  RR ) ) )
7950sseli 3599 . . . . . . . . . . . 12  |-  ( u  e.  { -oo }  ->  u  e.  RR* )
8079adantr 481 . . . . . . . . . . 11  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  u  e.  RR* )
8134sseli 3599 . . . . . . . . . . . 12  |-  ( w  e.  RR  ->  w  e.  RR* )
8281adantl 482 . . . . . . . . . . 11  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  w  e.  RR* )
83 mnflt 11957 . . . . . . . . . . . . . . 15  |-  ( w  e.  RR  -> -oo  <  w )
84 xrltnle 10105 . . . . . . . . . . . . . . . 16  |-  ( ( -oo  e.  RR*  /\  w  e.  RR* )  ->  ( -oo  <  w  <->  -.  w  <_ -oo ) )
8541, 81, 84sylancr 695 . . . . . . . . . . . . . . 15  |-  ( w  e.  RR  ->  ( -oo  <  w  <->  -.  w  <_ -oo ) )
8683, 85mpbid 222 . . . . . . . . . . . . . 14  |-  ( w  e.  RR  ->  -.  w  <_ -oo )
8786adantl 482 . . . . . . . . . . . . 13  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  -.  w  <_ -oo )
88 elsni 4194 . . . . . . . . . . . . . . 15  |-  ( u  e.  { -oo }  ->  u  = -oo )
8988adantr 481 . . . . . . . . . . . . . 14  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  u  = -oo )
9089breq2d 4665 . . . . . . . . . . . . 13  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  ( w  <_  u 
<->  w  <_ -oo )
)
9187, 90mtbird 315 . . . . . . . . . . . 12  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  -.  w  <_  u )
92 ioo0 12200 . . . . . . . . . . . . . 14  |-  ( ( u  e.  RR*  /\  w  e.  RR* )  ->  (
( u (,) w
)  =  (/)  <->  w  <_  u ) )
9379, 81, 92syl2an 494 . . . . . . . . . . . . 13  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  ( ( u (,) w )  =  (/) 
<->  w  <_  u )
)
9493necon3abid 2830 . . . . . . . . . . . 12  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  ( ( u (,) w )  =/=  (/) 
<->  -.  w  <_  u
) )
9591, 94mpbird 247 . . . . . . . . . . 11  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  ( u (,) w )  =/=  (/) )
96 df-ioo 12179 . . . . . . . . . . . 12  |-  (,)  =  ( y  e.  RR* ,  z  e.  RR*  |->  { v  e.  RR*  |  (
y  <  v  /\  v  <  z ) } )
97 idd 24 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  w  e.  RR* )  ->  (
x  <  w  ->  x  <  w ) )
98 xrltle 11982 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  w  e.  RR* )  ->  (
x  <  w  ->  x  <_  w ) )
99 idd 24 . . . . . . . . . . . 12  |-  ( ( u  e.  RR*  /\  x  e.  RR* )  ->  (
u  <  x  ->  u  <  x ) )
100 xrltle 11982 . . . . . . . . . . . 12  |-  ( ( u  e.  RR*  /\  x  e.  RR* )  ->  (
u  <  x  ->  u  <_  x ) )
10196, 97, 98, 99, 100ixxub 12196 . . . . . . . . . . 11  |-  ( ( u  e.  RR*  /\  w  e.  RR*  /\  ( u (,) w )  =/=  (/) )  ->  sup (
( u (,) w
) ,  RR* ,  <  )  =  w )
10280, 82, 95, 101syl3anc 1326 . . . . . . . . . 10  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  sup ( ( u (,) w ) , 
RR* ,  <  )  =  w )
103 simpr 477 . . . . . . . . . 10  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  w  e.  RR )
104102, 103eqeltrd 2701 . . . . . . . . 9  |-  ( ( u  e.  { -oo }  /\  w  e.  RR )  ->  sup ( ( u (,) w ) , 
RR* ,  <  )  e.  RR )
105104rgen2 2975 . . . . . . . 8  |-  A. u  e.  { -oo } A. w  e.  RR  sup ( ( u (,) w ) ,  RR* ,  <  )  e.  RR
106 fveq2 6191 . . . . . . . . . . . 12  |-  ( z  =  <. u ,  w >.  ->  ( (,) `  z
)  =  ( (,) `  <. u ,  w >. ) )
107 df-ov 6653 . . . . . . . . . . . 12  |-  ( u (,) w )  =  ( (,) `  <. u ,  w >. )
108106, 107syl6eqr 2674 . . . . . . . . . . 11  |-  ( z  =  <. u ,  w >.  ->  ( (,) `  z
)  =  ( u (,) w ) )
109108supeq1d 8352 . . . . . . . . . 10  |-  ( z  =  <. u ,  w >.  ->  sup ( ( (,) `  z ) ,  RR* ,  <  )  =  sup ( ( u (,) w ) ,  RR* ,  <  ) )
110109eleq1d 2686 . . . . . . . . 9  |-  ( z  =  <. u ,  w >.  ->  ( sup (
( (,) `  z
) ,  RR* ,  <  )  e.  RR  <->  sup (
( u (,) w
) ,  RR* ,  <  )  e.  RR ) )
111110ralxp 5263 . . . . . . . 8  |-  ( A. z  e.  ( { -oo }  X.  RR ) sup ( ( (,) `  z ) ,  RR* ,  <  )  e.  RR  <->  A. u  e.  { -oo } A. w  e.  RR  sup ( ( u (,) w ) ,  RR* ,  <  )  e.  RR )
112105, 111mpbir 221 . . . . . . 7  |-  A. z  e.  ( { -oo }  X.  RR ) sup (
( (,) `  z
) ,  RR* ,  <  )  e.  RR
113 ffn 6045 . . . . . . . . 9  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
11446, 113ax-mp 5 . . . . . . . 8  |-  (,)  Fn  ( RR*  X.  RR* )
115 supeq1 8351 . . . . . . . . . 10  |-  ( w  =  ( (,) `  z
)  ->  sup (
w ,  RR* ,  <  )  =  sup ( ( (,) `  z ) ,  RR* ,  <  )
)
116115eleq1d 2686 . . . . . . . . 9  |-  ( w  =  ( (,) `  z
)  ->  ( sup ( w ,  RR* ,  <  )  e.  RR  <->  sup ( ( (,) `  z
) ,  RR* ,  <  )  e.  RR ) )
117116ralima 6498 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* ) )  ->  ( A. w  e.  ( (,) " ( { -oo }  X.  RR ) ) sup ( w , 
RR* ,  <  )  e.  RR  <->  A. z  e.  ( { -oo }  X.  RR ) sup ( ( (,) `  z ) ,  RR* ,  <  )  e.  RR ) )
118114, 52, 117mp2an 708 . . . . . . 7  |-  ( A. w  e.  ( (,) " ( { -oo }  X.  RR ) ) sup ( w ,  RR* ,  <  )  e.  RR  <->  A. z  e.  ( { -oo }  X.  RR ) sup ( ( (,) `  z ) ,  RR* ,  <  )  e.  RR )
119112, 118mpbir 221 . . . . . 6  |-  A. w  e.  ( (,) " ( { -oo }  X.  RR ) ) sup (
w ,  RR* ,  <  )  e.  RR
120 ssralv 3666 . . . . . 6  |-  ( v 
C_  ( (,) " ( { -oo }  X.  RR ) )  ->  ( A. w  e.  ( (,) " ( { -oo }  X.  RR ) ) sup ( w , 
RR* ,  <  )  e.  RR  ->  A. w  e.  v  sup (
w ,  RR* ,  <  )  e.  RR ) )
12178, 119, 120mpisyl 21 . . . . 5  |-  ( (
ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  ->  A. w  e.  v  sup (
w ,  RR* ,  <  )  e.  RR )
122121adantrr 753 . . . 4  |-  ( (
ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v
) )  ->  A. w  e.  v  sup (
w ,  RR* ,  <  )  e.  RR )
123 fimaxre3 10970 . . . 4  |-  ( ( v  e.  Fin  /\  A. w  e.  v  sup ( w ,  RR* ,  <  )  e.  RR )  ->  E. x  e.  RR  A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x
)
12476, 122, 123syl2anc 693 . . 3  |-  ( (
ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v
) )  ->  E. x  e.  RR  A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x )
125 simplrr 801 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  ->  ran  F  C_  U. v
)
126125sselda 3603 . . . . . . 7  |-  ( ( ( ( ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  /\  z  e.  ran  F )  ->  z  e.  U. v )
127 eluni2 4440 . . . . . . . 8  |-  ( z  e.  U. v  <->  E. w  e.  v  z  e.  w )
128 r19.29r 3073 . . . . . . . . . 10  |-  ( ( E. w  e.  v  z  e.  w  /\  A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x
)  ->  E. w  e.  v  ( z  e.  w  /\  sup (
w ,  RR* ,  <  )  <_  x ) )
129 sspwuni 4611 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (,) " ( { -oo }  X.  RR ) )  C_  ~P RR 
<-> 
U. ( (,) " ( { -oo }  X.  RR ) )  C_  RR )
13031, 129mpbir 221 . . . . . . . . . . . . . . . . . 18  |-  ( (,) " ( { -oo }  X.  RR ) ) 
C_  ~P RR
131783ad2ant1 1082 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  v  C_  ( (,) " ( { -oo }  X.  RR ) ) )
132 simp2r 1088 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  w  e.  v )
133131, 132sseldd 3604 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  w  e.  ( (,) " ( { -oo }  X.  RR ) ) )
134130, 133sseldi 3601 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  w  e.  ~P RR )
135134elpwid 4170 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  w  C_  RR )
136 simp3l 1089 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  z  e.  w )
137135, 136sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  z  e.  RR )
138121r19.21bi 2932 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  w  e.  v )  ->  sup (
w ,  RR* ,  <  )  e.  RR )
139138adantrl 752 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v ) )  ->  sup ( w ,  RR* ,  <  )  e.  RR )
1401393adant3 1081 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  sup ( w ,  RR* ,  <  )  e.  RR )
141 simp2l 1087 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  x  e.  RR )
142135, 34syl6ss 3615 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  w  C_ 
RR* )
143 supxrub 12154 . . . . . . . . . . . . . . . 16  |-  ( ( w  C_  RR*  /\  z  e.  w )  ->  z  <_  sup ( w , 
RR* ,  <  ) )
144142, 136, 143syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  z  <_  sup ( w , 
RR* ,  <  ) )
145 simp3r 1090 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  sup ( w ,  RR* ,  <  )  <_  x
)
146137, 140, 141, 144, 145letrd 10194 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v )  /\  (
z  e.  w  /\  sup ( w ,  RR* ,  <  )  <_  x
) )  ->  z  <_  x )
1471463expia 1267 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  ( x  e.  RR  /\  w  e.  v ) )  -> 
( ( z  e.  w  /\  sup (
w ,  RR* ,  <  )  <_  x )  -> 
z  <_  x )
)
148147anassrs 680 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  x  e.  RR )  /\  w  e.  v )  ->  (
( z  e.  w  /\  sup ( w , 
RR* ,  <  )  <_  x )  ->  z  <_  x ) )
149148rexlimdva 3031 . . . . . . . . . . 11  |-  ( ( ( ph  /\  v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin ) )  /\  x  e.  RR )  ->  ( E. w  e.  v  ( z  e.  w  /\  sup (
w ,  RR* ,  <  )  <_  x )  -> 
z  <_  x )
)
150149adantlrr 757 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  ->  ( E. w  e.  v  ( z  e.  w  /\  sup (
w ,  RR* ,  <  )  <_  x )  -> 
z  <_  x )
)
151128, 150syl5 34 . . . . . . . . 9  |-  ( ( ( ph  /\  (
v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  ->  ( ( E. w  e.  v  z  e.  w  /\  A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x )  ->  z  <_  x ) )
152151expdimp 453 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  /\  E. w  e.  v  z  e.  w )  ->  ( A. w  e.  v  sup (
w ,  RR* ,  <  )  <_  x  ->  z  <_  x ) )
153127, 152sylan2b 492 . . . . . . 7  |-  ( ( ( ( ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  /\  z  e.  U. v
)  ->  ( A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x  ->  z  <_  x )
)
154126, 153syldan 487 . . . . . 6  |-  ( ( ( ( ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  /\  z  e.  ran  F )  ->  ( A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x  ->  z  <_  x )
)
155154ralrimdva 2969 . . . . 5  |-  ( ( ( ph  /\  (
v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  ->  ( A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x  ->  A. z  e.  ran  F  z  <_  x ) )
156 ffn 6045 . . . . . . . 8  |-  ( F : X --> RR  ->  F  Fn  X )
1578, 156syl 17 . . . . . . 7  |-  ( ph  ->  F  Fn  X )
158157ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  ->  F  Fn  X )
159 breq1 4656 . . . . . . 7  |-  ( z  =  ( F `  y )  ->  (
z  <_  x  <->  ( F `  y )  <_  x
) )
160159ralrn 6362 . . . . . 6  |-  ( F  Fn  X  ->  ( A. z  e.  ran  F  z  <_  x  <->  A. y  e.  X  ( F `  y )  <_  x
) )
161158, 160syl 17 . . . . 5  |-  ( ( ( ph  /\  (
v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  ->  ( A. z  e. 
ran  F  z  <_  x  <->  A. y  e.  X  ( F `  y )  <_  x ) )
162155, 161sylibd 229 . . . 4  |-  ( ( ( ph  /\  (
v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v ) )  /\  x  e.  RR )  ->  ( A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x  ->  A. y  e.  X  ( F `  y )  <_  x
) )
163162reximdva 3017 . . 3  |-  ( (
ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v
) )  ->  ( E. x  e.  RR  A. w  e.  v  sup ( w ,  RR* ,  <  )  <_  x  ->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x ) )
164124, 163mpd 15 . 2  |-  ( (
ph  /\  ( v  e.  ( ~P ( (,) " ( { -oo }  X.  RR ) )  i^i  Fin )  /\  ran  F  C_  U. v
) )  ->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x
)
16571, 164rexlimddv 3035 1  |-  ( ph  ->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   RRcr 9935   1c1 9937    + caddc 9939   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   ↾t crest 16081   topGenctg 16098   Topctop 20698  TopOnctopon 20715   TopBasesctb 20749    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190
This theorem is referenced by:  evth  22758
  Copyright terms: Public domain W3C validator