MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc2 Structured version   Visualization version   Unicode version

Theorem evthicc2 23229
Description: Combine ivthicc 23227 with evthicc 23228 to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
evthicc.1  |-  ( ph  ->  A  e.  RR )
evthicc.2  |-  ( ph  ->  B  e.  RR )
evthicc.3  |-  ( ph  ->  A  <_  B )
evthicc.4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
Assertion
Ref Expression
evthicc2  |-  ( ph  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y    ph, x, y

Proof of Theorem evthicc2
Dummy variables  a 
b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evthicc.1 . . . 4  |-  ( ph  ->  A  e.  RR )
2 evthicc.2 . . . 4  |-  ( ph  ->  B  e.  RR )
3 evthicc.3 . . . 4  |-  ( ph  ->  A  <_  B )
4 evthicc.4 . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
51, 2, 3, 4evthicc 23228 . . 3  |-  ( ph  ->  ( E. a  e.  ( A [,] B
) A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  E. b  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) ) )
6 reeanv 3107 . . 3  |-  ( E. a  e.  ( A [,] B ) E. b  e.  ( A [,] B ) ( A. z  e.  ( A [,] B ) ( F `  z
)  <_  ( F `  a )  /\  A. z  e.  ( A [,] B ) ( F `
 b )  <_ 
( F `  z
) )  <->  ( E. a  e.  ( A [,] B ) A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  E. b  e.  ( A [,] B ) A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) ) )
75, 6sylibr 224 . 2  |-  ( ph  ->  E. a  e.  ( A [,] B ) E. b  e.  ( A [,] B ) ( A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) ) )
8 r19.26 3064 . . . 4  |-  ( A. z  e.  ( A [,] B ) ( ( F `  z )  <_  ( F `  a )  /\  ( F `  b )  <_  ( F `  z
) )  <->  ( A. z  e.  ( A [,] B ) ( F `
 z )  <_ 
( F `  a
)  /\  A. z  e.  ( A [,] B
) ( F `  b )  <_  ( F `  z )
) )
94adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
10 cncff 22696 . . . . . . . . 9  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
119, 10syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  F : ( A [,] B ) --> RR )
12 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  b  e.  ( A [,] B
) )
1311, 12ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( F `  b )  e.  RR )
1413adantr 481 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  ( F `  b )  e.  RR )
15 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  a  e.  ( A [,] B
) )
1611, 15ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( F `  a )  e.  RR )
1716adantr 481 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  ( F `  a )  e.  RR )
1811adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  F : ( A [,] B ) --> RR )
19 ffn 6045 . . . . . . . . . 10  |-  ( F : ( A [,] B ) --> RR  ->  F  Fn  ( A [,] B ) )
2018, 19syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  F  Fn  ( A [,] B
) )
2113adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( F `  b )  e.  RR )
2216adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( F `  a )  e.  RR )
23 elicc2 12238 . . . . . . . . . . . . . 14  |-  ( ( ( F `  b
)  e.  RR  /\  ( F `  a )  e.  RR )  -> 
( ( F `  z )  e.  ( ( F `  b
) [,] ( F `
 a ) )  <-> 
( ( F `  z )  e.  RR  /\  ( F `  b
)  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) )
2421, 22, 23syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( ( F `  z )  e.  ( ( F `  b ) [,] ( F `  a )
)  <->  ( ( F `
 z )  e.  RR  /\  ( F `
 b )  <_ 
( F `  z
)  /\  ( F `  z )  <_  ( F `  a )
) ) )
25 3anass 1042 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  e.  RR  /\  ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) )  <->  ( ( F `  z )  e.  RR  /\  ( ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) )
2624, 25syl6bb 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( ( F `  z )  e.  ( ( F `  b ) [,] ( F `  a )
)  <->  ( ( F `
 z )  e.  RR  /\  ( ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) ) )
27 ancom 466 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  <_  ( F `  a )  /\  ( F `  b )  <_  ( F `  z
) )  <->  ( ( F `  b )  <_  ( F `  z
)  /\  ( F `  z )  <_  ( F `  a )
) )
2811ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( F `  z )  e.  RR )
2928biantrurd 529 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( (
( F `  b
)  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) )  <->  ( ( F `  z )  e.  RR  /\  ( ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) ) )
3027, 29syl5bb 272 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( (
( F `  z
)  <_  ( F `  a )  /\  ( F `  b )  <_  ( F `  z
) )  <->  ( ( F `  z )  e.  RR  /\  ( ( F `  b )  <_  ( F `  z )  /\  ( F `  z )  <_  ( F `  a
) ) ) ) )
3126, 30bitr4d 271 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  z  e.  ( A [,] B ) )  ->  ( ( F `  z )  e.  ( ( F `  b ) [,] ( F `  a )
)  <->  ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) ) )
3231ralbidva 2985 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( A. z  e.  ( A [,] B ) ( F `  z )  e.  ( ( F `
 b ) [,] ( F `  a
) )  <->  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) ) )
3332biimpar 502 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  A. z  e.  ( A [,] B
) ( F `  z )  e.  ( ( F `  b
) [,] ( F `
 a ) ) )
34 ffnfv 6388 . . . . . . . . 9  |-  ( F : ( A [,] B ) --> ( ( F `  b ) [,] ( F `  a ) )  <->  ( F  Fn  ( A [,] B
)  /\  A. z  e.  ( A [,] B
) ( F `  z )  e.  ( ( F `  b
) [,] ( F `
 a ) ) ) )
3520, 33, 34sylanbrc 698 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  F : ( A [,] B ) --> ( ( F `  b ) [,] ( F `  a ) ) )
36 frn 6053 . . . . . . . 8  |-  ( F : ( A [,] B ) --> ( ( F `  b ) [,] ( F `  a ) )  ->  ran  F  C_  ( ( F `  b ) [,] ( F `  a
) ) )
3735, 36syl 17 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  ran  F 
C_  ( ( F `
 b ) [,] ( F `  a
) ) )
381adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  A  e.  RR )
392adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  B  e.  RR )
40 ssid 3624 . . . . . . . . . 10  |-  ( A [,] B )  C_  ( A [,] B )
4140a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( A [,] B )  C_  ( A [,] B ) )
42 ax-resscn 9993 . . . . . . . . . . 11  |-  RR  C_  CC
43 ssid 3624 . . . . . . . . . . 11  |-  CC  C_  CC
44 cncfss 22702 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
4542, 43, 44mp2an 708 . . . . . . . . . 10  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4645, 9sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  F  e.  ( ( A [,] B ) -cn-> CC ) )
4711ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
4838, 39, 12, 15, 41, 46, 47ivthicc 23227 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  (
( F `  b
) [,] ( F `
 a ) ) 
C_  ran  F )
4948adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  (
( F `  b
) [,] ( F `
 a ) ) 
C_  ran  F )
5037, 49eqssd 3620 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  ran  F  =  ( ( F `
 b ) [,] ( F `  a
) ) )
51 rspceov 6692 . . . . . 6  |-  ( ( ( F `  b
)  e.  RR  /\  ( F `  a )  e.  RR  /\  ran  F  =  ( ( F `
 b ) [,] ( F `  a
) ) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) )
5214, 17, 50, 51syl3anc 1326 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( A [,] B )  /\  b  e.  ( A [,] B ) ) )  /\  A. z  e.  ( A [,] B
) ( ( F `
 z )  <_ 
( F `  a
)  /\  ( F `  b )  <_  ( F `  z )
) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y
) )
5352ex 450 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  ( A. z  e.  ( A [,] B ) ( ( F `  z
)  <_  ( F `  a )  /\  ( F `  b )  <_  ( F `  z
) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y
) ) )
548, 53syl5bir 233 . . 3  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  b  e.  ( A [,] B ) ) )  ->  (
( A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) ) )
5554rexlimdvva 3038 . 2  |-  ( ph  ->  ( E. a  e.  ( A [,] B
) E. b  e.  ( A [,] B
) ( A. z  e.  ( A [,] B
) ( F `  z )  <_  ( F `  a )  /\  A. z  e.  ( A [,] B ) ( F `  b
)  <_  ( F `  z ) )  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) ) )
567, 55mpd 15 1  |-  ( ph  ->  E. x  e.  RR  E. y  e.  RR  ran  F  =  ( x [,] y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    <_ cle 10075   [,]cicc 12178   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681
This theorem is referenced by:  dvcnvrelem1  23780
  Copyright terms: Public domain W3C validator