Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem25 Structured version   Visualization version   Unicode version

Theorem fourierdlem25 40349
Description: If  C is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem25.m  |-  ( ph  ->  M  e.  NN )
fourierdlem25.qf  |-  ( ph  ->  Q : ( 0 ... M ) --> RR )
fourierdlem25.cel  |-  ( ph  ->  C  e.  ( ( Q `  0 ) [,] ( Q `  M ) ) )
fourierdlem25.cnel  |-  ( ph  ->  -.  C  e.  ran  Q )
fourierdlem25.i  |-  I  =  sup ( { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } ,  RR ,  <  )
Assertion
Ref Expression
fourierdlem25  |-  ( ph  ->  E. j  e.  ( 0..^ M ) C  e.  ( ( Q `
 j ) (,) ( Q `  (
j  +  1 ) ) ) )
Distinct variable groups:    C, k    C, j    j, I    k, I    k, M    j, M    Q, k    Q, j
Allowed substitution hints:    ph( j, k)

Proof of Theorem fourierdlem25
Dummy variables  h  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem25.i . . 3  |-  I  =  sup ( { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } ,  RR ,  <  )
2 ssrab2 3687 . . . 4  |-  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C }  C_  (
0..^ M )
3 ltso 10118 . . . . . 6  |-  <  Or  RR
43a1i 11 . . . . 5  |-  ( ph  ->  <  Or  RR )
5 fzofi 12773 . . . . . . 7  |-  ( 0..^ M )  e.  Fin
6 ssfi 8180 . . . . . . 7  |-  ( ( ( 0..^ M )  e.  Fin  /\  {
k  e.  ( 0..^ M )  |  ( Q `  k )  <  C }  C_  ( 0..^ M ) )  ->  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C }  e.  Fin )
75, 2, 6mp2an 708 . . . . . 6  |-  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C }  e.  Fin
87a1i 11 . . . . 5  |-  ( ph  ->  { k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }  e.  Fin )
9 0zd 11389 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
10 fourierdlem25.m . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
1110nnzd 11481 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
1210nngt0d 11064 . . . . . . . 8  |-  ( ph  ->  0  <  M )
13 fzolb 12476 . . . . . . . 8  |-  ( 0  e.  ( 0..^ M )  <->  ( 0  e.  ZZ  /\  M  e.  ZZ  /\  0  < 
M ) )
149, 11, 12, 13syl3anbrc 1246 . . . . . . 7  |-  ( ph  ->  0  e.  ( 0..^ M ) )
15 fourierdlem25.qf . . . . . . . . 9  |-  ( ph  ->  Q : ( 0 ... M ) --> RR )
16 elfzofz 12485 . . . . . . . . . 10  |-  ( 0  e.  ( 0..^ M )  ->  0  e.  ( 0 ... M
) )
1714, 16syl 17 . . . . . . . . 9  |-  ( ph  ->  0  e.  ( 0 ... M ) )
1815, 17ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( Q `  0
)  e.  RR )
1910nnnn0d 11351 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  NN0 )
20 nn0uz 11722 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
2119, 20syl6eleq 2711 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
22 eluzfz2 12349 . . . . . . . . . . . 12  |-  ( M  e.  ( ZZ>= `  0
)  ->  M  e.  ( 0 ... M
) )
2321, 22syl 17 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ( 0 ... M ) )
2415, 23ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( Q `  M
)  e.  RR )
2518, 24iccssred 39727 . . . . . . . . 9  |-  ( ph  ->  ( ( Q ` 
0 ) [,] ( Q `  M )
)  C_  RR )
26 fourierdlem25.cel . . . . . . . . 9  |-  ( ph  ->  C  e.  ( ( Q `  0 ) [,] ( Q `  M ) ) )
2725, 26sseldd 3604 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
2818rexrd 10089 . . . . . . . . 9  |-  ( ph  ->  ( Q `  0
)  e.  RR* )
2924rexrd 10089 . . . . . . . . 9  |-  ( ph  ->  ( Q `  M
)  e.  RR* )
30 iccgelb 12230 . . . . . . . . 9  |-  ( ( ( Q `  0
)  e.  RR*  /\  ( Q `  M )  e.  RR*  /\  C  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  ( Q `  0 )  <_  C )
3128, 29, 26, 30syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( Q `  0
)  <_  C )
32 fourierdlem25.cnel . . . . . . . . . 10  |-  ( ph  ->  -.  C  e.  ran  Q )
33 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  C  =  ( Q `  0 ) )  ->  C  =  ( Q `  0 ) )
34 ffn 6045 . . . . . . . . . . . . . 14  |-  ( Q : ( 0 ... M ) --> RR  ->  Q  Fn  ( 0 ... M ) )
3515, 34syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  Fn  ( 0 ... M ) )
3635adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  C  =  ( Q `  0 ) )  ->  Q  Fn  ( 0 ... M
) )
3717adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  C  =  ( Q `  0 ) )  ->  0  e.  ( 0 ... M
) )
38 fnfvelrn 6356 . . . . . . . . . . . 12  |-  ( ( Q  Fn  ( 0 ... M )  /\  0  e.  ( 0 ... M ) )  ->  ( Q ` 
0 )  e.  ran  Q )
3936, 37, 38syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  C  =  ( Q `  0 ) )  ->  ( Q `  0 )  e. 
ran  Q )
4033, 39eqeltrd 2701 . . . . . . . . . 10  |-  ( (
ph  /\  C  =  ( Q `  0 ) )  ->  C  e.  ran  Q )
4132, 40mtand 691 . . . . . . . . 9  |-  ( ph  ->  -.  C  =  ( Q `  0 ) )
4241neqned 2801 . . . . . . . 8  |-  ( ph  ->  C  =/=  ( Q `
 0 ) )
4318, 27, 31, 42leneltd 10191 . . . . . . 7  |-  ( ph  ->  ( Q `  0
)  <  C )
44 fveq2 6191 . . . . . . . . 9  |-  ( k  =  0  ->  ( Q `  k )  =  ( Q ` 
0 ) )
4544breq1d 4663 . . . . . . . 8  |-  ( k  =  0  ->  (
( Q `  k
)  <  C  <->  ( Q `  0 )  < 
C ) )
4645elrab 3363 . . . . . . 7  |-  ( 0  e.  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C } 
<->  ( 0  e.  ( 0..^ M )  /\  ( Q `  0 )  <  C ) )
4714, 43, 46sylanbrc 698 . . . . . 6  |-  ( ph  ->  0  e.  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } )
48 ne0i 3921 . . . . . 6  |-  ( 0  e.  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C }  ->  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C }  =/=  (/) )
4947, 48syl 17 . . . . 5  |-  ( ph  ->  { k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }  =/=  (/) )
50 fzossfz 12488 . . . . . . . 8  |-  ( 0..^ M )  C_  (
0 ... M )
51 fzssz 12343 . . . . . . . . 9  |-  ( 0 ... M )  C_  ZZ
52 zssre 11384 . . . . . . . . 9  |-  ZZ  C_  RR
5351, 52sstri 3612 . . . . . . . 8  |-  ( 0 ... M )  C_  RR
5450, 53sstri 3612 . . . . . . 7  |-  ( 0..^ M )  C_  RR
552, 54sstri 3612 . . . . . 6  |-  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C }  C_  RR
5655a1i 11 . . . . 5  |-  ( ph  ->  { k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }  C_  RR )
57 fisupcl 8375 . . . . 5  |-  ( (  <  Or  RR  /\  ( { k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }  e.  Fin  /\  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C }  =/=  (/)  /\  {
k  e.  ( 0..^ M )  |  ( Q `  k )  <  C }  C_  RR ) )  ->  sup ( { k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C } ,  RR ,  <  )  e.  { k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }
)
584, 8, 49, 56, 57syl13anc 1328 . . . 4  |-  ( ph  ->  sup ( { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } ,  RR ,  <  )  e.  {
k  e.  ( 0..^ M )  |  ( Q `  k )  <  C } )
592, 58sseldi 3601 . . 3  |-  ( ph  ->  sup ( { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } ,  RR ,  <  )  e.  ( 0..^ M ) )
601, 59syl5eqel 2705 . 2  |-  ( ph  ->  I  e.  ( 0..^ M ) )
6150, 60sseldi 3601 . . . . 5  |-  ( ph  ->  I  e.  ( 0 ... M ) )
6215, 61ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( Q `  I
)  e.  RR )
6362rexrd 10089 . . 3  |-  ( ph  ->  ( Q `  I
)  e.  RR* )
64 fzofzp1 12565 . . . . . 6  |-  ( I  e.  ( 0..^ M )  ->  ( I  +  1 )  e.  ( 0 ... M
) )
6560, 64syl 17 . . . . 5  |-  ( ph  ->  ( I  +  1 )  e.  ( 0 ... M ) )
6615, 65ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( Q `  (
I  +  1 ) )  e.  RR )
6766rexrd 10089 . . 3  |-  ( ph  ->  ( Q `  (
I  +  1 ) )  e.  RR* )
681, 58syl5eqel 2705 . . . . 5  |-  ( ph  ->  I  e.  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } )
69 fveq2 6191 . . . . . . 7  |-  ( k  =  I  ->  ( Q `  k )  =  ( Q `  I ) )
7069breq1d 4663 . . . . . 6  |-  ( k  =  I  ->  (
( Q `  k
)  <  C  <->  ( Q `  I )  <  C
) )
7170elrab 3363 . . . . 5  |-  ( I  e.  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C } 
<->  ( I  e.  ( 0..^ M )  /\  ( Q `  I )  <  C ) )
7268, 71sylib 208 . . . 4  |-  ( ph  ->  ( I  e.  ( 0..^ M )  /\  ( Q `  I )  <  C ) )
7372simprd 479 . . 3  |-  ( ph  ->  ( Q `  I
)  <  C )
7454, 60sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  I  e.  RR )
75 ltp1 10861 . . . . . . . . . 10  |-  ( I  e.  RR  ->  I  <  ( I  +  1 ) )
76 id 22 . . . . . . . . . . 11  |-  ( I  e.  RR  ->  I  e.  RR )
77 peano2re 10209 . . . . . . . . . . 11  |-  ( I  e.  RR  ->  (
I  +  1 )  e.  RR )
7876, 77ltnled 10184 . . . . . . . . . 10  |-  ( I  e.  RR  ->  (
I  <  ( I  +  1 )  <->  -.  (
I  +  1 )  <_  I ) )
7975, 78mpbid 222 . . . . . . . . 9  |-  ( I  e.  RR  ->  -.  ( I  +  1
)  <_  I )
8074, 79syl 17 . . . . . . . 8  |-  ( ph  ->  -.  ( I  + 
1 )  <_  I
)
8150, 51sstri 3612 . . . . . . . . . . . 12  |-  ( 0..^ M )  C_  ZZ
822, 81sstri 3612 . . . . . . . . . . 11  |-  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C }  C_  ZZ
8382a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C }  C_  ZZ )
84 elrabi 3359 . . . . . . . . . . . . . . 15  |-  ( h  e.  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C }  ->  h  e.  ( 0..^ M ) )
85 elfzo0le 12511 . . . . . . . . . . . . . . 15  |-  ( h  e.  ( 0..^ M )  ->  h  <_  M )
8684, 85syl 17 . . . . . . . . . . . . . 14  |-  ( h  e.  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C }  ->  h  <_  M
)
8786adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  h  e.  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C } )  ->  h  <_  M
)
8887ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. h  e.  {
k  e.  ( 0..^ M )  |  ( Q `  k )  <  C } h  <_  M )
89 breq2 4657 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (
h  <_  m  <->  h  <_  M ) )
9089ralbidv 2986 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  ( A. h  e.  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } h  <_  m 
<-> 
A. h  e.  {
k  e.  ( 0..^ M )  |  ( Q `  k )  <  C } h  <_  M ) )
9190rspcev 3309 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  A. h  e.  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } h  <_  M )  ->  E. m  e.  ZZ  A. h  e. 
{ k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }
h  <_  m )
9211, 88, 91syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  E. m  e.  ZZ  A. h  e.  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } h  <_  m )
9392adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  E. m  e.  ZZ  A. h  e. 
{ k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }
h  <_  m )
94 elfzuz 12338 . . . . . . . . . . . . . 14  |-  ( ( I  +  1 )  e.  ( 0 ... M )  ->  (
I  +  1 )  e.  ( ZZ>= `  0
) )
9565, 94syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( I  +  1 )  e.  ( ZZ>= ` 
0 ) )
9695adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( I  +  1 )  e.  ( ZZ>= `  0 )
)
9711adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  M  e.  ZZ )
9853, 65sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( I  +  1 )  e.  RR )
9998adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( I  +  1 )  e.  RR )
10097zred 11482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  M  e.  RR )
101 elfzle2 12345 . . . . . . . . . . . . . . 15  |-  ( ( I  +  1 )  e.  ( 0 ... M )  ->  (
I  +  1 )  <_  M )
10265, 101syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( I  +  1 )  <_  M )
103102adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( I  +  1 )  <_  M )
104 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( Q `  ( I  +  1 ) )  <  C
)
10566adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( Q `  ( I  +  1 ) )  e.  RR )
10627adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  C  e.  RR )
107105, 106ltnled 10184 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( ( Q `  ( I  +  1 ) )  <  C  <->  -.  C  <_  ( Q `  (
I  +  1 ) ) ) )
108104, 107mpbid 222 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  -.  C  <_  ( Q `  (
I  +  1 ) ) )
109 iccleub 12229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( Q `  0
)  e.  RR*  /\  ( Q `  M )  e.  RR*  /\  C  e.  ( ( Q ` 
0 ) [,] ( Q `  M )
) )  ->  C  <_  ( Q `  M
) )
11028, 29, 26, 109syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  C  <_  ( Q `  M ) )
111110adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  M  =  ( I  +  1
) )  ->  C  <_  ( Q `  M
) )
112 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( M  =  ( I  + 
1 )  ->  ( Q `  M )  =  ( Q `  ( I  +  1
) ) )
113112adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  M  =  ( I  +  1
) )  ->  ( Q `  M )  =  ( Q `  ( I  +  1
) ) )
114111, 113breqtrd 4679 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  M  =  ( I  +  1
) )  ->  C  <_  ( Q `  (
I  +  1 ) ) )
115114adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( Q `  ( I  +  1 ) )  <  C )  /\  M  =  ( I  +  1 ) )  ->  C  <_  ( Q `  ( I  +  1 ) ) )
116108, 115mtand 691 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  -.  M  =  ( I  + 
1 ) )
117116neqned 2801 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  M  =/=  ( I  +  1
) )
11899, 100, 103, 117leneltd 10191 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( I  +  1 )  < 
M )
119 elfzo2 12473 . . . . . . . . . . . 12  |-  ( ( I  +  1 )  e.  ( 0..^ M )  <->  ( ( I  +  1 )  e.  ( ZZ>= `  0 )  /\  M  e.  ZZ  /\  ( I  +  1 )  <  M ) )
12096, 97, 118, 119syl3anbrc 1246 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( I  +  1 )  e.  ( 0..^ M ) )
121 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  ( I  + 
1 )  ->  ( Q `  k )  =  ( Q `  ( I  +  1
) ) )
122121breq1d 4663 . . . . . . . . . . . 12  |-  ( k  =  ( I  + 
1 )  ->  (
( Q `  k
)  <  C  <->  ( Q `  ( I  +  1 ) )  <  C
) )
123122elrab 3363 . . . . . . . . . . 11  |-  ( ( I  +  1 )  e.  { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C } 
<->  ( ( I  + 
1 )  e.  ( 0..^ M )  /\  ( Q `  ( I  +  1 ) )  <  C ) )
124120, 104, 123sylanbrc 698 . . . . . . . . . 10  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( I  +  1 )  e. 
{ k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }
)
125 suprzub 11779 . . . . . . . . . 10  |-  ( ( { k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }  C_  ZZ  /\  E. m  e.  ZZ  A. h  e. 
{ k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C }
h  <_  m  /\  ( I  +  1
)  e.  { k  e.  ( 0..^ M )  |  ( Q `
 k )  < 
C } )  -> 
( I  +  1 )  <_  sup ( { k  e.  ( 0..^ M )  |  ( Q `  k
)  <  C } ,  RR ,  <  )
)
12683, 93, 124, 125syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( I  +  1 )  <_  sup ( { k  e.  ( 0..^ M )  |  ( Q `  k )  <  C } ,  RR ,  <  ) )
127126, 1syl6breqr 4695 . . . . . . . 8  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  <  C
)  ->  ( I  +  1 )  <_  I )
12880, 127mtand 691 . . . . . . 7  |-  ( ph  ->  -.  ( Q `  ( I  +  1
) )  <  C
)
129 eqcom 2629 . . . . . . . . . . 11  |-  ( ( Q `  ( I  +  1 ) )  =  C  <->  C  =  ( Q `  ( I  +  1 ) ) )
130129biimpi 206 . . . . . . . . . 10  |-  ( ( Q `  ( I  +  1 ) )  =  C  ->  C  =  ( Q `  ( I  +  1
) ) )
131130adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  =  C )  ->  C  =  ( Q `  ( I  +  1 ) ) )
13235adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  =  C )  ->  Q  Fn  ( 0 ... M
) )
13365adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  =  C )  ->  ( I  +  1 )  e.  ( 0 ... M
) )
134 fnfvelrn 6356 . . . . . . . . . 10  |-  ( ( Q  Fn  ( 0 ... M )  /\  ( I  +  1
)  e.  ( 0 ... M ) )  ->  ( Q `  ( I  +  1
) )  e.  ran  Q )
135132, 133, 134syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  =  C )  ->  ( Q `  ( I  +  1 ) )  e.  ran  Q )
136131, 135eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  ( Q `  ( I  +  1 ) )  =  C )  ->  C  e.  ran  Q )
13732, 136mtand 691 . . . . . . 7  |-  ( ph  ->  -.  ( Q `  ( I  +  1
) )  =  C )
138128, 137jca 554 . . . . . 6  |-  ( ph  ->  ( -.  ( Q `
 ( I  + 
1 ) )  < 
C  /\  -.  ( Q `  ( I  +  1 ) )  =  C ) )
139 pm4.56 516 . . . . . 6  |-  ( ( -.  ( Q `  ( I  +  1
) )  <  C  /\  -.  ( Q `  ( I  +  1
) )  =  C )  <->  -.  ( ( Q `  ( I  +  1 ) )  <  C  \/  ( Q `  ( I  +  1 ) )  =  C ) )
140138, 139sylib 208 . . . . 5  |-  ( ph  ->  -.  ( ( Q `
 ( I  + 
1 ) )  < 
C  \/  ( Q `
 ( I  + 
1 ) )  =  C ) )
14166, 27leloed 10180 . . . . 5  |-  ( ph  ->  ( ( Q `  ( I  +  1
) )  <_  C  <->  ( ( Q `  (
I  +  1 ) )  <  C  \/  ( Q `  ( I  +  1 ) )  =  C ) ) )
142140, 141mtbird 315 . . . 4  |-  ( ph  ->  -.  ( Q `  ( I  +  1
) )  <_  C
)
14327, 66ltnled 10184 . . . 4  |-  ( ph  ->  ( C  <  ( Q `  ( I  +  1 ) )  <->  -.  ( Q `  (
I  +  1 ) )  <_  C )
)
144142, 143mpbird 247 . . 3  |-  ( ph  ->  C  <  ( Q `
 ( I  + 
1 ) ) )
14563, 67, 27, 73, 144eliood 39720 . 2  |-  ( ph  ->  C  e.  ( ( Q `  I ) (,) ( Q `  ( I  +  1
) ) ) )
146 fveq2 6191 . . . . 5  |-  ( j  =  I  ->  ( Q `  j )  =  ( Q `  I ) )
147 oveq1 6657 . . . . . 6  |-  ( j  =  I  ->  (
j  +  1 )  =  ( I  + 
1 ) )
148147fveq2d 6195 . . . . 5  |-  ( j  =  I  ->  ( Q `  ( j  +  1 ) )  =  ( Q `  ( I  +  1
) ) )
149146, 148oveq12d 6668 . . . 4  |-  ( j  =  I  ->  (
( Q `  j
) (,) ( Q `
 ( j  +  1 ) ) )  =  ( ( Q `
 I ) (,) ( Q `  (
I  +  1 ) ) ) )
150149eleq2d 2687 . . 3  |-  ( j  =  I  ->  ( C  e.  ( ( Q `  j ) (,) ( Q `  (
j  +  1 ) ) )  <->  C  e.  ( ( Q `  I ) (,) ( Q `  ( I  +  1 ) ) ) ) )
151150rspcev 3309 . 2  |-  ( ( I  e.  ( 0..^ M )  /\  C  e.  ( ( Q `  I ) (,) ( Q `  ( I  +  1 ) ) ) )  ->  E. j  e.  ( 0..^ M ) C  e.  ( ( Q `  j ) (,) ( Q `  ( j  +  1 ) ) ) )
15260, 145, 151syl2anc 693 1  |-  ( ph  ->  E. j  e.  ( 0..^ M ) C  e.  ( ( Q `
 j ) (,) ( Q `  (
j  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175   [,]cicc 12178   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466
This theorem is referenced by:  fourierdlem41  40365  fourierdlem48  40371  fourierdlem49  40372  fourierdlem70  40393  fourierdlem71  40394  fourierdlem103  40426  fourierdlem104  40427
  Copyright terms: Public domain W3C validator