MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem2 Structured version   Visualization version   Unicode version

Theorem mbfmullem2 23491
Description: Lemma for mbfmul 23493. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1  |-  ( ph  ->  F  e. MblFn )
mbfmul.2  |-  ( ph  ->  G  e. MblFn )
mbfmul.3  |-  ( ph  ->  F : A --> RR )
mbfmul.4  |-  ( ph  ->  G : A --> RR )
mbfmul.5  |-  ( ph  ->  P : NN --> dom  S.1 )
mbfmul.6  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  NN  |->  ( ( P `  n
) `  x )
)  ~~>  ( F `  x ) )
mbfmul.7  |-  ( ph  ->  Q : NN --> dom  S.1 )
mbfmul.8  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  NN  |->  ( ( Q `  n
) `  x )
)  ~~>  ( G `  x ) )
Assertion
Ref Expression
mbfmullem2  |-  ( ph  ->  ( F  oF  x.  G )  e. MblFn
)
Distinct variable groups:    x, n, A    P, n, x    ph, n, x    Q, n, x    n, F, x    n, G, x

Proof of Theorem mbfmullem2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 mbfmul.3 . . . 4  |-  ( ph  ->  F : A --> RR )
2 ffn 6045 . . . 4  |-  ( F : A --> RR  ->  F  Fn  A )
31, 2syl 17 . . 3  |-  ( ph  ->  F  Fn  A )
4 mbfmul.4 . . . 4  |-  ( ph  ->  G : A --> RR )
5 ffn 6045 . . . 4  |-  ( G : A --> RR  ->  G  Fn  A )
64, 5syl 17 . . 3  |-  ( ph  ->  G  Fn  A )
7 fdm 6051 . . . . 5  |-  ( F : A --> RR  ->  dom 
F  =  A )
81, 7syl 17 . . . 4  |-  ( ph  ->  dom  F  =  A )
9 mbfmul.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
10 mbfdm 23395 . . . . 5  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
119, 10syl 17 . . . 4  |-  ( ph  ->  dom  F  e.  dom  vol )
128, 11eqeltrrd 2702 . . 3  |-  ( ph  ->  A  e.  dom  vol )
13 inidm 3822 . . 3  |-  ( A  i^i  A )  =  A
14 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
15 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  ( G `  x ) )
163, 6, 12, 12, 13, 14, 15offval 6904 . 2  |-  ( ph  ->  ( F  oF  x.  G )  =  ( x  e.  A  |->  ( ( F `  x )  x.  ( G `  x )
) ) )
17 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
18 1zzd 11408 . . 3  |-  ( ph  ->  1  e.  ZZ )
19 1zzd 11408 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  1  e.  ZZ )
20 mbfmul.6 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  NN  |->  ( ( P `  n
) `  x )
)  ~~>  ( F `  x ) )
21 nnex 11026 . . . . . 6  |-  NN  e.  _V
2221mptex 6486 . . . . 5  |-  ( n  e.  NN  |->  ( ( ( P `  n
) `  x )  x.  ( ( Q `  n ) `  x
) ) )  e. 
_V
2322a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  NN  |->  ( ( ( P `  n ) `  x
)  x.  ( ( Q `  n ) `
 x ) ) )  e.  _V )
24 mbfmul.8 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  NN  |->  ( ( Q `  n
) `  x )
)  ~~>  ( G `  x ) )
25 mbfmul.5 . . . . . . . . . . 11  |-  ( ph  ->  P : NN --> dom  S.1 )
2625ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( P `
 n )  e. 
dom  S.1 )
27 i1ff 23443 . . . . . . . . . 10  |-  ( ( P `  n )  e.  dom  S.1  ->  ( P `  n ) : RR --> RR )
2826, 27syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( P `
 n ) : RR --> RR )
2928adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  NN )  ->  ( P `  n ) : RR --> RR )
30 mblss 23299 . . . . . . . . . . 11  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
3112, 30syl 17 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
3231sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
3332adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  NN )  ->  x  e.  RR )
3429, 33ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  NN )  ->  (
( P `  n
) `  x )  e.  RR )
3534recnd 10068 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  NN )  ->  (
( P `  n
) `  x )  e.  CC )
36 eqid 2622 . . . . . 6  |-  ( n  e.  NN  |->  ( ( P `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( P `
 n ) `  x ) )
3735, 36fmptd 6385 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  NN  |->  ( ( P `  n
) `  x )
) : NN --> CC )
3837ffvelrnda 6359 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  x
) ) `  k
)  e.  CC )
39 mbfmul.7 . . . . . . . . . . 11  |-  ( ph  ->  Q : NN --> dom  S.1 )
4039ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( Q `
 n )  e. 
dom  S.1 )
41 i1ff 23443 . . . . . . . . . 10  |-  ( ( Q `  n )  e.  dom  S.1  ->  ( Q `  n ) : RR --> RR )
4240, 41syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( Q `
 n ) : RR --> RR )
4342adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  NN )  ->  ( Q `  n ) : RR --> RR )
4443, 33ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  NN )  ->  (
( Q `  n
) `  x )  e.  RR )
4544recnd 10068 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  NN )  ->  (
( Q `  n
) `  x )  e.  CC )
46 eqid 2622 . . . . . 6  |-  ( n  e.  NN  |->  ( ( Q `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( Q `
 n ) `  x ) )
4745, 46fmptd 6385 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  NN  |->  ( ( Q `  n
) `  x )
) : NN --> CC )
4847ffvelrnda 6359 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( Q `  n ) `  x
) ) `  k
)  e.  CC )
49 fveq2 6191 . . . . . . . . 9  |-  ( n  =  k  ->  ( P `  n )  =  ( P `  k ) )
5049fveq1d 6193 . . . . . . . 8  |-  ( n  =  k  ->  (
( P `  n
) `  x )  =  ( ( P `
 k ) `  x ) )
51 fveq2 6191 . . . . . . . . 9  |-  ( n  =  k  ->  ( Q `  n )  =  ( Q `  k ) )
5251fveq1d 6193 . . . . . . . 8  |-  ( n  =  k  ->  (
( Q `  n
) `  x )  =  ( ( Q `
 k ) `  x ) )
5350, 52oveq12d 6668 . . . . . . 7  |-  ( n  =  k  ->  (
( ( P `  n ) `  x
)  x.  ( ( Q `  n ) `
 x ) )  =  ( ( ( P `  k ) `
 x )  x.  ( ( Q `  k ) `  x
) ) )
54 eqid 2622 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( ( P `  n
) `  x )  x.  ( ( Q `  n ) `  x
) ) )  =  ( n  e.  NN  |->  ( ( ( P `
 n ) `  x )  x.  (
( Q `  n
) `  x )
) )
55 ovex 6678 . . . . . . 7  |-  ( ( ( P `  k
) `  x )  x.  ( ( Q `  k ) `  x
) )  e.  _V
5653, 54, 55fvmpt 6282 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( P `
 n ) `  x )  x.  (
( Q `  n
) `  x )
) ) `  k
)  =  ( ( ( P `  k
) `  x )  x.  ( ( Q `  k ) `  x
) ) )
5756adantl 482 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( ( P `
 n ) `  x )  x.  (
( Q `  n
) `  x )
) ) `  k
)  =  ( ( ( P `  k
) `  x )  x.  ( ( Q `  k ) `  x
) ) )
58 fvex 6201 . . . . . . . 8  |-  ( ( P `  k ) `
 x )  e. 
_V
5950, 36, 58fvmpt 6282 . . . . . . 7  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( P `  n ) `  x
) ) `  k
)  =  ( ( P `  k ) `
 x ) )
60 fvex 6201 . . . . . . . 8  |-  ( ( Q `  k ) `
 x )  e. 
_V
6152, 46, 60fvmpt 6282 . . . . . . 7  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( Q `  n ) `  x
) ) `  k
)  =  ( ( Q `  k ) `
 x ) )
6259, 61oveq12d 6668 . . . . . 6  |-  ( k  e.  NN  ->  (
( ( n  e.  NN  |->  ( ( P `
 n ) `  x ) ) `  k )  x.  (
( n  e.  NN  |->  ( ( Q `  n ) `  x
) ) `  k
) )  =  ( ( ( P `  k ) `  x
)  x.  ( ( Q `  k ) `
 x ) ) )
6362adantl 482 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( ( n  e.  NN  |->  ( ( P `
 n ) `  x ) ) `  k )  x.  (
( n  e.  NN  |->  ( ( Q `  n ) `  x
) ) `  k
) )  =  ( ( ( P `  k ) `  x
)  x.  ( ( Q `  k ) `
 x ) ) )
6457, 63eqtr4d 2659 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( ( P `
 n ) `  x )  x.  (
( Q `  n
) `  x )
) ) `  k
)  =  ( ( ( n  e.  NN  |->  ( ( P `  n ) `  x
) ) `  k
)  x.  ( ( n  e.  NN  |->  ( ( Q `  n
) `  x )
) `  k )
) )
6517, 19, 20, 23, 24, 38, 48, 64climmul 14363 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  NN  |->  ( ( ( P `  n ) `  x
)  x.  ( ( Q `  n ) `
 x ) ) )  ~~>  ( ( F `
 x )  x.  ( G `  x
) ) )
6631adantr 481 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
6766resmptd 5452 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( x  e.  RR  |->  ( ( ( P `  n ) `  x
)  x.  ( ( Q `  n ) `
 x ) ) )  |`  A )  =  ( x  e.  A  |->  ( ( ( P `  n ) `
 x )  x.  ( ( Q `  n ) `  x
) ) ) )
68 ffn 6045 . . . . . . . 8  |-  ( ( P `  n ) : RR --> RR  ->  ( P `  n )  Fn  RR )
6928, 68syl 17 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( P `
 n )  Fn  RR )
70 ffn 6045 . . . . . . . 8  |-  ( ( Q `  n ) : RR --> RR  ->  ( Q `  n )  Fn  RR )
7142, 70syl 17 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( Q `
 n )  Fn  RR )
72 reex 10027 . . . . . . . 8  |-  RR  e.  _V
7372a1i 11 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  RR  e.  _V )
74 inidm 3822 . . . . . . 7  |-  ( RR 
i^i  RR )  =  RR
75 eqidd 2623 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  RR )  ->  (
( P `  n
) `  x )  =  ( ( P `
 n ) `  x ) )
76 eqidd 2623 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  RR )  ->  (
( Q `  n
) `  x )  =  ( ( Q `
 n ) `  x ) )
7769, 71, 73, 73, 74, 75, 76offval 6904 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( P `  n )  oF  x.  ( Q `  n )
)  =  ( x  e.  RR  |->  ( ( ( P `  n
) `  x )  x.  ( ( Q `  n ) `  x
) ) ) )
7826, 40i1fmul 23463 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( P `  n )  oF  x.  ( Q `  n )
)  e.  dom  S.1 )
79 i1fmbf 23442 . . . . . . 7  |-  ( ( ( P `  n
)  oF  x.  ( Q `  n
) )  e.  dom  S.1 
->  ( ( P `  n )  oF  x.  ( Q `  n ) )  e. MblFn
)
8078, 79syl 17 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( P `  n )  oF  x.  ( Q `  n )
)  e. MblFn )
8177, 80eqeltrrd 2702 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( x  e.  RR  |->  ( ( ( P `  n
) `  x )  x.  ( ( Q `  n ) `  x
) ) )  e. MblFn
)
8212adantr 481 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  A  e. 
dom  vol )
83 mbfres 23411 . . . . 5  |-  ( ( ( x  e.  RR  |->  ( ( ( P `
 n ) `  x )  x.  (
( Q `  n
) `  x )
) )  e. MblFn  /\  A  e.  dom  vol )  -> 
( ( x  e.  RR  |->  ( ( ( P `  n ) `
 x )  x.  ( ( Q `  n ) `  x
) ) )  |`  A )  e. MblFn )
8481, 82, 83syl2anc 693 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( x  e.  RR  |->  ( ( ( P `  n ) `  x
)  x.  ( ( Q `  n ) `
 x ) ) )  |`  A )  e. MblFn )
8567, 84eqeltrrd 2702 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( x  e.  A  |->  ( ( ( P `  n
) `  x )  x.  ( ( Q `  n ) `  x
) ) )  e. MblFn
)
86 ovex 6678 . . . 4  |-  ( ( ( P `  n
) `  x )  x.  ( ( Q `  n ) `  x
) )  e.  _V
8786a1i 11 . . 3  |-  ( (
ph  /\  ( n  e.  NN  /\  x  e.  A ) )  -> 
( ( ( P `
 n ) `  x )  x.  (
( Q `  n
) `  x )
)  e.  _V )
8817, 18, 65, 85, 87mbflim 23435 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( ( F `  x )  x.  ( G `  x )
) )  e. MblFn )
8916, 88eqeltrd 2701 1  |-  ( ph  ->  ( F  oF  x.  G )  e. MblFn
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   1c1 9937    x. cmul 9941   NNcn 11020    ~~> cli 14215   volcvol 23232  MblFncmbf 23383   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  mbfmullem  23492
  Copyright terms: Public domain W3C validator