MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem3 Structured version   Visualization version   Unicode version

Theorem nmoleub2lem3 22915
Description: Lemma for nmoleub2a 22917 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
nmoleub2.n  |-  N  =  ( S normOp T )
nmoleub2.v  |-  V  =  ( Base `  S
)
nmoleub2.l  |-  L  =  ( norm `  S
)
nmoleub2.m  |-  M  =  ( norm `  T
)
nmoleub2.g  |-  G  =  (Scalar `  S )
nmoleub2.w  |-  K  =  ( Base `  G
)
nmoleub2.s  |-  ( ph  ->  S  e.  (NrmMod  i^i CMod ) )
nmoleub2.t  |-  ( ph  ->  T  e.  (NrmMod  i^i CMod ) )
nmoleub2.f  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
nmoleub2.a  |-  ( ph  ->  A  e.  RR* )
nmoleub2.r  |-  ( ph  ->  R  e.  RR+ )
nmoleub2a.5  |-  ( ph  ->  QQ  C_  K )
nmoleub2lem3.p  |-  .x.  =  ( .s `  S )
nmoleub2lem3.1  |-  ( ph  ->  A  e.  RR )
nmoleub2lem3.2  |-  ( ph  ->  0  <_  A )
nmoleub2lem3.3  |-  ( ph  ->  B  e.  V )
nmoleub2lem3.4  |-  ( ph  ->  B  =/=  ( 0g
`  S ) )
nmoleub2lem3.5  |-  ( ph  ->  ( ( r  .x.  B )  e.  V  ->  ( ( L `  ( r  .x.  B
) )  <  R  ->  ( ( M `  ( F `  ( r 
.x.  B ) ) )  /  R )  <_  A ) ) )
nmoleub2lem3.6  |-  ( ph  ->  -.  ( M `  ( F `  B ) )  <_  ( A  x.  ( L `  B
) ) )
Assertion
Ref Expression
nmoleub2lem3  |-  -.  ph
Distinct variable groups:    A, r    F, r    L, r    M, r    ph, r    B, r    R, r
Allowed substitution hints:    S( r)    T( r)    .x. ( r)    G( r)    K( r)    N( r)    V( r)

Proof of Theorem nmoleub2lem3
StepHypRef Expression
1 simprl 794 . . . 4  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r )
2 qre 11793 . . . . . 6  |-  ( r  e.  QQ  ->  r  e.  RR )
32ad2antlr 763 . . . . 5  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
r  e.  RR )
4 nmoleub2lem3.1 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
5 nmoleub2.r . . . . . . . . 9  |-  ( ph  ->  R  e.  RR+ )
65rpred 11872 . . . . . . . 8  |-  ( ph  ->  R  e.  RR )
74, 6remulcld 10070 . . . . . . 7  |-  ( ph  ->  ( A  x.  R
)  e.  RR )
8 nmoleub2.t . . . . . . . . . . 11  |-  ( ph  ->  T  e.  (NrmMod  i^i CMod ) )
98elin1d 3802 . . . . . . . . . 10  |-  ( ph  ->  T  e. NrmMod )
10 nlmngp 22481 . . . . . . . . . 10  |-  ( T  e. NrmMod  ->  T  e. NrmGrp )
119, 10syl 17 . . . . . . . . 9  |-  ( ph  ->  T  e. NrmGrp )
12 nmoleub2.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
13 nmoleub2.v . . . . . . . . . . . 12  |-  V  =  ( Base `  S
)
14 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  T )  =  (
Base `  T )
1513, 14lmhmf 19034 . . . . . . . . . . 11  |-  ( F  e.  ( S LMHom  T
)  ->  F : V
--> ( Base `  T
) )
1612, 15syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : V --> ( Base `  T ) )
17 nmoleub2lem3.3 . . . . . . . . . 10  |-  ( ph  ->  B  e.  V )
1816, 17ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( F `  B
)  e.  ( Base `  T ) )
19 nmoleub2.m . . . . . . . . . 10  |-  M  =  ( norm `  T
)
2014, 19nmcl 22420 . . . . . . . . 9  |-  ( ( T  e. NrmGrp  /\  ( F `  B )  e.  ( Base `  T
) )  ->  ( M `  ( F `  B ) )  e.  RR )
2111, 18, 20syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( M `  ( F `  B )
)  e.  RR )
22 0red 10041 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
23 nmoleub2.s . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  (NrmMod  i^i CMod ) )
2423elin1d 3802 . . . . . . . . . . . 12  |-  ( ph  ->  S  e. NrmMod )
25 nlmngp 22481 . . . . . . . . . . . 12  |-  ( S  e. NrmMod  ->  S  e. NrmGrp )
2624, 25syl 17 . . . . . . . . . . 11  |-  ( ph  ->  S  e. NrmGrp )
27 nmoleub2.l . . . . . . . . . . . 12  |-  L  =  ( norm `  S
)
2813, 27nmcl 22420 . . . . . . . . . . 11  |-  ( ( S  e. NrmGrp  /\  B  e.  V )  ->  ( L `  B )  e.  RR )
2926, 17, 28syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( L `  B
)  e.  RR )
304, 29remulcld 10070 . . . . . . . . 9  |-  ( ph  ->  ( A  x.  ( L `  B )
)  e.  RR )
31 nmoleub2lem3.2 . . . . . . . . . 10  |-  ( ph  ->  0  <_  A )
3213, 27nmge0 22421 . . . . . . . . . . 11  |-  ( ( S  e. NrmGrp  /\  B  e.  V )  ->  0  <_  ( L `  B
) )
3326, 17, 32syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( L `  B ) )
344, 29, 31, 33mulge0d 10604 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( A  x.  ( L `  B
) ) )
35 nmoleub2lem3.6 . . . . . . . . . 10  |-  ( ph  ->  -.  ( M `  ( F `  B ) )  <_  ( A  x.  ( L `  B
) ) )
3630, 21ltnled 10184 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  ( L `  B ) )  <  ( M `
 ( F `  B ) )  <->  -.  ( M `  ( F `  B ) )  <_ 
( A  x.  ( L `  B )
) ) )
3735, 36mpbird 247 . . . . . . . . 9  |-  ( ph  ->  ( A  x.  ( L `  B )
)  <  ( M `  ( F `  B
) ) )
3822, 30, 21, 34, 37lelttrd 10195 . . . . . . . 8  |-  ( ph  ->  0  <  ( M `
 ( F `  B ) ) )
3921, 38elrpd 11869 . . . . . . 7  |-  ( ph  ->  ( M `  ( F `  B )
)  e.  RR+ )
407, 39rerpdivcld 11903 . . . . . 6  |-  ( ph  ->  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  e.  RR )
4140ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  e.  RR )
4212ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  F  e.  ( S LMHom  T ) )
43 nmoleub2a.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  QQ  C_  K )
4443sselda 3603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  QQ )  ->  r  e.  K )
4544adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
r  e.  K )
4617ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  B  e.  V )
47 nmoleub2.g . . . . . . . . . . . . 13  |-  G  =  (Scalar `  S )
48 nmoleub2.w . . . . . . . . . . . . 13  |-  K  =  ( Base `  G
)
49 nmoleub2lem3.p . . . . . . . . . . . . 13  |-  .x.  =  ( .s `  S )
50 eqid 2622 . . . . . . . . . . . . 13  |-  ( .s
`  T )  =  ( .s `  T
)
5147, 48, 13, 49, 50lmhmlin 19035 . . . . . . . . . . . 12  |-  ( ( F  e.  ( S LMHom 
T )  /\  r  e.  K  /\  B  e.  V )  ->  ( F `  ( r  .x.  B ) )  =  ( r ( .s
`  T ) ( F `  B ) ) )
5242, 45, 46, 51syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( F `  (
r  .x.  B )
)  =  ( r ( .s `  T
) ( F `  B ) ) )
5352fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( M `  ( F `  ( r  .x.  B ) ) )  =  ( M `  ( r ( .s
`  T ) ( F `  B ) ) ) )
549ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  T  e. NrmMod )
55 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (Scalar `  T )  =  (Scalar `  T )
5647, 55lmhmsca 19030 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  G )
5742, 56syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
(Scalar `  T )  =  G )
5857fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( Base `  (Scalar `  T
) )  =  (
Base `  G )
)
5958, 48syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( Base `  (Scalar `  T
) )  =  K )
6045, 59eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
r  e.  ( Base `  (Scalar `  T )
) )
6118ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( F `  B
)  e.  ( Base `  T ) )
62 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  T )
)
63 eqid 2622 . . . . . . . . . . . 12  |-  ( norm `  (Scalar `  T )
)  =  ( norm `  (Scalar `  T )
)
6414, 19, 50, 55, 62, 63nmvs 22480 . . . . . . . . . . 11  |-  ( ( T  e. NrmMod  /\  r  e.  ( Base `  (Scalar `  T ) )  /\  ( F `  B )  e.  ( Base `  T
) )  ->  ( M `  ( r
( .s `  T
) ( F `  B ) ) )  =  ( ( (
norm `  (Scalar `  T
) ) `  r
)  x.  ( M `
 ( F `  B ) ) ) )
6554, 60, 61, 64syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( M `  (
r ( .s `  T ) ( F `
 B ) ) )  =  ( ( ( norm `  (Scalar `  T ) ) `  r )  x.  ( M `  ( F `  B ) ) ) )
6657fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( norm `  (Scalar `  T
) )  =  (
norm `  G )
)
6766fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( norm `  (Scalar `  T ) ) `  r )  =  ( ( norm `  G
) `  r )
)
6823elin2d 3803 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  e. CMod )
6968ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  S  e. CMod )
7047, 48clmabs 22883 . . . . . . . . . . . . . 14  |-  ( ( S  e. CMod  /\  r  e.  K )  ->  ( abs `  r )  =  ( ( norm `  G
) `  r )
)
7169, 45, 70syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( abs `  r
)  =  ( (
norm `  G ) `  r ) )
72 0red 10041 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
0  e.  RR )
735rpge0d 11876 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  0  <_  R )
744, 6, 31, 73mulge0d 10604 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  0  <_  ( A  x.  R ) )
75 divge0 10892 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  x.  R )  e.  RR  /\  0  <_  ( A  x.  R ) )  /\  ( ( M `  ( F `  B ) )  e.  RR  /\  0  <  ( M `  ( F `  B ) ) ) )  -> 
0  <_  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) ) )
767, 74, 21, 38, 75syl22anc 1327 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  0  <_  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) ) )
7776ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
0  <_  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) ) )
7872, 41, 3, 77, 1lelttrd 10195 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
0  <  r )
7972, 3, 78ltled 10185 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
0  <_  r )
803, 79absidd 14161 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( abs `  r
)  =  r )
8171, 80eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( norm `  G
) `  r )  =  r )
8267, 81eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( norm `  (Scalar `  T ) ) `  r )  =  r )
8382oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( ( norm `  (Scalar `  T )
) `  r )  x.  ( M `  ( F `  B )
) )  =  ( r  x.  ( M `
 ( F `  B ) ) ) )
8453, 65, 833eqtrd 2660 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( M `  ( F `  ( r  .x.  B ) ) )  =  ( r  x.  ( M `  ( F `  B )
) ) )
8584oveq1d 6665 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( M `  ( F `  ( r 
.x.  B ) ) )  /  R )  =  ( ( r  x.  ( M `  ( F `  B ) ) )  /  R
) )
8613, 47, 49, 48clmvscl 22888 . . . . . . . . . 10  |-  ( ( S  e. CMod  /\  r  e.  K  /\  B  e.  V )  ->  (
r  .x.  B )  e.  V )
8769, 45, 46, 86syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( r  .x.  B
)  e.  V )
8824ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  S  e. NrmMod )
89 eqid 2622 . . . . . . . . . . . . 13  |-  ( norm `  G )  =  (
norm `  G )
9013, 27, 49, 47, 48, 89nmvs 22480 . . . . . . . . . . . 12  |-  ( ( S  e. NrmMod  /\  r  e.  K  /\  B  e.  V )  ->  ( L `  ( r  .x.  B ) )  =  ( ( ( norm `  G ) `  r
)  x.  ( L `
 B ) ) )
9188, 45, 46, 90syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( L `  (
r  .x.  B )
)  =  ( ( ( norm `  G
) `  r )  x.  ( L `  B
) ) )
9281oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( ( norm `  G ) `  r
)  x.  ( L `
 B ) )  =  ( r  x.  ( L `  B
) ) )
9391, 92eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( L `  (
r  .x.  B )
)  =  ( r  x.  ( L `  B ) ) )
94 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
r  <  ( R  /  ( L `  B ) ) )
956ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  R  e.  RR )
96 nmoleub2lem3.4 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  =/=  ( 0g
`  S ) )
97 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  S )  =  ( 0g `  S
)
9813, 27, 97nmrpcl 22424 . . . . . . . . . . . . . . 15  |-  ( ( S  e. NrmGrp  /\  B  e.  V  /\  B  =/=  ( 0g `  S
) )  ->  ( L `  B )  e.  RR+ )
9926, 17, 96, 98syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( L `  B
)  e.  RR+ )
10099rpregt0d 11878 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( L `  B )  e.  RR  /\  0  <  ( L `
 B ) ) )
101100ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( L `  B )  e.  RR  /\  0  <  ( L `
 B ) ) )
102 ltmuldiv 10896 . . . . . . . . . . . 12  |-  ( ( r  e.  RR  /\  R  e.  RR  /\  (
( L `  B
)  e.  RR  /\  0  <  ( L `  B ) ) )  ->  ( ( r  x.  ( L `  B ) )  < 
R  <->  r  <  ( R  /  ( L `  B ) ) ) )
1033, 95, 101, 102syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( r  x.  ( L `  B
) )  <  R  <->  r  <  ( R  / 
( L `  B
) ) ) )
10494, 103mpbird 247 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( r  x.  ( L `  B )
)  <  R )
10593, 104eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( L `  (
r  .x.  B )
)  <  R )
106 nmoleub2lem3.5 . . . . . . . . . 10  |-  ( ph  ->  ( ( r  .x.  B )  e.  V  ->  ( ( L `  ( r  .x.  B
) )  <  R  ->  ( ( M `  ( F `  ( r 
.x.  B ) ) )  /  R )  <_  A ) ) )
107106ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( r  .x.  B )  e.  V  ->  ( ( L `  ( r  .x.  B
) )  <  R  ->  ( ( M `  ( F `  ( r 
.x.  B ) ) )  /  R )  <_  A ) ) )
10887, 105, 107mp2d 49 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( M `  ( F `  ( r 
.x.  B ) ) )  /  R )  <_  A )
10985, 108eqbrtrrd 4677 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( r  x.  ( M `  ( F `  B )
) )  /  R
)  <_  A )
11021ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( M `  ( F `  B )
)  e.  RR )
1113, 110remulcld 10070 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( r  x.  ( M `  ( F `  B ) ) )  e.  RR )
1124ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  A  e.  RR )
1135ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  R  e.  RR+ )
114111, 112, 113ledivmul2d 11926 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( ( r  x.  ( M `  ( F `  B ) ) )  /  R
)  <_  A  <->  ( r  x.  ( M `  ( F `  B )
) )  <_  ( A  x.  R )
) )
115109, 114mpbid 222 . . . . . 6  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( r  x.  ( M `  ( F `  B ) ) )  <_  ( A  x.  R ) )
116112, 95remulcld 10070 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( A  x.  R
)  e.  RR )
11721, 38jca 554 . . . . . . . 8  |-  ( ph  ->  ( ( M `  ( F `  B ) )  e.  RR  /\  0  <  ( M `  ( F `  B ) ) ) )
118117ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( M `  ( F `  B ) )  e.  RR  /\  0  <  ( M `  ( F `  B ) ) ) )
119 lemuldiv 10903 . . . . . . 7  |-  ( ( r  e.  RR  /\  ( A  x.  R
)  e.  RR  /\  ( ( M `  ( F `  B ) )  e.  RR  /\  0  <  ( M `  ( F `  B ) ) ) )  -> 
( ( r  x.  ( M `  ( F `  B )
) )  <_  ( A  x.  R )  <->  r  <_  ( ( A  x.  R )  / 
( M `  ( F `  B )
) ) ) )
1203, 116, 118, 119syl3anc 1326 . . . . . 6  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( ( r  x.  ( M `  ( F `  B )
) )  <_  ( A  x.  R )  <->  r  <_  ( ( A  x.  R )  / 
( M `  ( F `  B )
) ) ) )
121115, 120mpbid 222 . . . . 5  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
r  <_  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) ) )
1223, 41, 121lensymd 10188 . . . 4  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  ->  -.  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r )
1231, 122pm2.21dd 186 . . 3  |-  ( ( ( ph  /\  r  e.  QQ )  /\  (
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  r  /\  r  <  ( R  /  ( L `  B )
) ) )  -> 
( M `  ( F `  B )
)  <_  ( A  x.  ( L `  B
) ) )
1246, 99rerpdivcld 11903 . . . 4  |-  ( ph  ->  ( R  /  ( L `  B )
)  e.  RR )
1254recnd 10068 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
1266recnd 10068 . . . . . . 7  |-  ( ph  ->  R  e.  CC )
12729recnd 10068 . . . . . . 7  |-  ( ph  ->  ( L `  B
)  e.  CC )
128 mulass 10024 . . . . . . . 8  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( L `  B )  e.  CC )  ->  (
( A  x.  R
)  x.  ( L `
 B ) )  =  ( A  x.  ( R  x.  ( L `  B )
) ) )
129 mul12 10202 . . . . . . . 8  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( L `  B )  e.  CC )  ->  ( A  x.  ( R  x.  ( L `  B
) ) )  =  ( R  x.  ( A  x.  ( L `  B ) ) ) )
130128, 129eqtrd 2656 . . . . . . 7  |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( L `  B )  e.  CC )  ->  (
( A  x.  R
)  x.  ( L `
 B ) )  =  ( R  x.  ( A  x.  ( L `  B )
) ) )
131125, 126, 127, 130syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( A  x.  R )  x.  ( L `  B )
)  =  ( R  x.  ( A  x.  ( L `  B ) ) ) )
13230, 21, 5, 37ltmul2dd 11928 . . . . . 6  |-  ( ph  ->  ( R  x.  ( A  x.  ( L `  B ) ) )  <  ( R  x.  ( M `  ( F `
 B ) ) ) )
133131, 132eqbrtrd 4675 . . . . 5  |-  ( ph  ->  ( ( A  x.  R )  x.  ( L `  B )
)  <  ( R  x.  ( M `  ( F `  B )
) ) )
134 lt2mul2div 10901 . . . . . 6  |-  ( ( ( ( A  x.  R )  e.  RR  /\  ( ( L `  B )  e.  RR  /\  0  <  ( L `
 B ) ) )  /\  ( R  e.  RR  /\  (
( M `  ( F `  B )
)  e.  RR  /\  0  <  ( M `  ( F `  B ) ) ) ) )  ->  ( ( ( A  x.  R )  x.  ( L `  B ) )  < 
( R  x.  ( M `  ( F `  B ) ) )  <-> 
( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  ( R  / 
( L `  B
) ) ) )
1357, 100, 6, 117, 134syl22anc 1327 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  R )  x.  ( L `  B
) )  <  ( R  x.  ( M `  ( F `  B
) ) )  <->  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  ( R  /  ( L `  B ) ) ) )
136133, 135mpbid 222 . . . 4  |-  ( ph  ->  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  ( R  / 
( L `  B
) ) )
137 qbtwnre 12030 . . . 4  |-  ( ( ( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  e.  RR  /\  ( R  /  ( L `  B ) )  e.  RR  /\  ( ( A  x.  R )  /  ( M `  ( F `  B ) ) )  <  ( R  /  ( L `  B ) ) )  ->  E. r  e.  QQ  ( ( ( A  x.  R )  / 
( M `  ( F `  B )
) )  <  r  /\  r  <  ( R  /  ( L `  B ) ) ) )
13840, 124, 136, 137syl3anc 1326 . . 3  |-  ( ph  ->  E. r  e.  QQ  ( ( ( A  x.  R )  / 
( M `  ( F `  B )
) )  <  r  /\  r  <  ( R  /  ( L `  B ) ) ) )
139123, 138r19.29a 3078 . 2  |-  ( ph  ->  ( M `  ( F `  B )
)  <_  ( A  x.  ( L `  B
) ) )
140139, 35pm2.65i 185 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    i^i cin 3573    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   QQcq 11788   RR+crp 11832   abscabs 13974   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LMHom clmhm 19019   normcnm 22381  NrmGrpcngp 22382  NrmModcnlm 22385   normOpcnmo 22509  CModcclm 22862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lmhm 19022  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nlm 22391  df-clm 22863
This theorem is referenced by:  nmoleub2lem2  22916
  Copyright terms: Public domain W3C validator