MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem2 Structured version   Visualization version   Unicode version

Theorem chtppilimlem2 25163
Description: Lemma for chtppilim 25164. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1  |-  ( ph  ->  A  e.  RR+ )
chtppilim.2  |-  ( ph  ->  A  <  1 )
Assertion
Ref Expression
chtppilimlem2  |-  ( ph  ->  E. z  e.  RR  A. x  e.  ( 2 [,) +oo ) ( z  <_  x  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x ) ) )  <  ( theta `  x ) ) )
Distinct variable groups:    x, z, A    ph, x, z

Proof of Theorem chtppilimlem2
StepHypRef Expression
1 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  x  e.  ( 2 [,) +oo ) )
2 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
3 elicopnf 12269 . . . . . . . . . 10  |-  ( 2  e.  RR  ->  (
x  e.  ( 2 [,) +oo )  <->  ( x  e.  RR  /\  2  <_  x ) ) )
42, 3ax-mp 5 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) +oo )  <->  ( x  e.  RR  /\  2  <_  x ) )
51, 4sylib 208 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  e.  RR  /\  2  <_  x ) )
65simpld 475 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  x  e.  RR )
7 0red 10041 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  0  e.  RR )
82a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  2  e.  RR )
9 2pos 11112 . . . . . . . . 9  |-  0  <  2
109a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  0  <  2 )
115simprd 479 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  2  <_  x )
127, 8, 6, 10, 11ltletrd 10197 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  0  <  x )
136, 12elrpd 11869 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  x  e.  RR+ )
14 chtppilim.1 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
1514rpred 11872 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
1615adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  A  e.  RR )
1713, 16rpcxpcld 24476 . . . . 5  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  ^c  A )  e.  RR+ )
18 ppinncl 24900 . . . . . . 7  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
(π `  x )  e.  NN )
195, 18syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (π `  x )  e.  NN )
2019nnrpd 11870 . . . . 5  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (π `  x )  e.  RR+ )
2117, 20rpdivcld 11889 . . . 4  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  ^c  A )  /  (π `  x ) )  e.  RR+ )
2221ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  ( 2 [,) +oo )
( ( x  ^c  A )  /  (π `  x ) )  e.  RR+ )
23 chtppilim.2 . . . 4  |-  ( ph  ->  A  <  1 )
24 1re 10039 . . . . 5  |-  1  e.  RR
25 difrp 11868 . . . . 5  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  <  1  <->  ( 1  -  A )  e.  RR+ ) )
2615, 24, 25sylancl 694 . . . 4  |-  ( ph  ->  ( A  <  1  <->  ( 1  -  A )  e.  RR+ ) )
2723, 26mpbid 222 . . 3  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
28 ovexd 6680 . . . . . 6  |-  ( ph  ->  ( 2 [,) +oo )  e.  _V )
2924a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  1  e.  RR )
30 1lt2 11194 . . . . . . . . . . 11  |-  1  <  2
3130a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  1  <  2 )
3229, 8, 6, 31, 11ltletrd 10197 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  1  <  x )
336, 32rplogcld 24375 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  ( log `  x )  e.  RR+ )
3413, 33rpdivcld 11889 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  /  ( log `  x ) )  e.  RR+ )
3534, 20rpdivcld 11889 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+ )
3627adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
1  -  A )  e.  RR+ )
3736rpred 11872 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
1  -  A )  e.  RR )
3813, 37rpcxpcld 24476 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  ^c  ( 1  -  A ) )  e.  RR+ )
3933, 38rpdivcld 11889 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) )  e.  RR+ )
40 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) ) )
41 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 2 [,) +oo )  |->  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) ) )
4228, 35, 39, 40, 41offval2 6914 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( 2 [,) +oo )  |->  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )  oF  x.  (
x  e.  ( 2 [,) +oo )  |->  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  x.  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) ) ) )
4334rpcnd 11874 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  /  ( log `  x ) )  e.  CC )
4439rpcnd 11874 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) )  e.  CC )
4520rpcnne0d 11881 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
(π `  x )  e.  CC  /\  (π `  x
)  =/=  0 ) )
46 div23 10704 . . . . . . . 8  |-  ( ( ( x  /  ( log `  x ) )  e.  CC  /\  (
( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) )  e.  CC  /\  ( (π `  x )  e.  CC  /\  (π `  x
)  =/=  0 ) )  ->  ( (
( x  /  ( log `  x ) )  x.  ( ( log `  x )  /  (
x  ^c  ( 1  -  A ) ) ) )  / 
(π `  x ) )  =  ( ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  x.  ( ( log `  x )  /  (
x  ^c  ( 1  -  A ) ) ) ) )
4743, 44, 45, 46syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( ( x  / 
( log `  x
) )  x.  (
( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) )  /  (π `  x ) )  =  ( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  x.  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) ) )
4833rpcnne0d 11881 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( log `  x
)  e.  CC  /\  ( log `  x )  =/=  0 ) )
4938rpcnne0d 11881 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  ^c 
( 1  -  A
) )  e.  CC  /\  ( x  ^c 
( 1  -  A
) )  =/=  0
) )
506recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  x  e.  CC )
51 dmdcan 10735 . . . . . . . . . 10  |-  ( ( ( ( log `  x
)  e.  CC  /\  ( log `  x )  =/=  0 )  /\  ( ( x  ^c  ( 1  -  A ) )  e.  CC  /\  ( x  ^c  ( 1  -  A ) )  =/=  0 )  /\  x  e.  CC )  ->  ( ( ( log `  x )  /  (
x  ^c  ( 1  -  A ) ) )  x.  (
x  /  ( log `  x ) ) )  =  ( x  / 
( x  ^c 
( 1  -  A
) ) ) )
5248, 49, 50, 51syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) )  x.  ( x  /  ( log `  x
) ) )  =  ( x  /  (
x  ^c  ( 1  -  A ) ) ) )
5343, 44mulcomd 10061 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  /  ( log `  x ) )  x.  ( ( log `  x )  /  (
x  ^c  ( 1  -  A ) ) ) )  =  ( ( ( log `  x )  /  (
x  ^c  ( 1  -  A ) ) )  x.  (
x  /  ( log `  x ) ) ) )
5413rpcnne0d 11881 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  e.  CC  /\  x  =/=  0 ) )
55 ax-1cn 9994 . . . . . . . . . . . . 13  |-  1  e.  CC
5655a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  1  e.  CC )
5736rpcnd 11874 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
1  -  A )  e.  CC )
58 cxpsub 24428 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  1  e.  CC  /\  ( 1  -  A
)  e.  CC )  ->  ( x  ^c  ( 1  -  ( 1  -  A
) ) )  =  ( ( x  ^c  1 )  / 
( x  ^c 
( 1  -  A
) ) ) )
5954, 56, 57, 58syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  ^c  ( 1  -  ( 1  -  A ) ) )  =  ( ( x  ^c  1 )  /  ( x  ^c  ( 1  -  A ) ) ) )
6016recnd 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  A  e.  CC )
61 nncan 10310 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  (
1  -  A ) )  =  A )
6255, 60, 61sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
1  -  ( 1  -  A ) )  =  A )
6362oveq2d 6666 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  ^c  ( 1  -  ( 1  -  A ) ) )  =  ( x  ^c  A ) )
6459, 63eqtr3d 2658 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  ^c 
1 )  /  (
x  ^c  ( 1  -  A ) ) )  =  ( x  ^c  A ) )
6550cxp1d 24452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  ^c  1 )  =  x )
6665oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  ^c 
1 )  /  (
x  ^c  ( 1  -  A ) ) )  =  ( x  /  ( x  ^c  ( 1  -  A ) ) ) )
6764, 66eqtr3d 2658 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  ^c  A )  =  ( x  /  ( x  ^c  ( 1  -  A ) ) ) )
6852, 53, 673eqtr4d 2666 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  /  ( log `  x ) )  x.  ( ( log `  x )  /  (
x  ^c  ( 1  -  A ) ) ) )  =  ( x  ^c  A ) )
6968oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( ( x  / 
( log `  x
) )  x.  (
( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) )  /  (π `  x ) )  =  ( ( x  ^c  A )  /  (π `  x ) ) )
7047, 69eqtr3d 2658 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( ( x  / 
( log `  x
) )  /  (π `  x ) )  x.  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) )  =  ( ( x  ^c  A )  /  (π `  x ) ) )
7170mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( x  e.  ( 2 [,) +oo )  |->  ( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  x.  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  ^c  A )  /  (π `  x ) ) ) )
7242, 71eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( x  e.  ( 2 [,) +oo )  |->  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )  oF  x.  (
x  e.  ( 2 [,) +oo )  |->  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  ^c  A )  /  (π `  x ) ) ) )
73 chebbnd1 25161 . . . . 5  |-  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  e.  O(1)
7413ex 450 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 2 [,) +oo )  ->  x  e.  RR+ )
)
7574ssrdv 3609 . . . . . 6  |-  ( ph  ->  ( 2 [,) +oo )  C_  RR+ )
76 cxploglim 24704 . . . . . . 7  |-  ( ( 1  -  A )  e.  RR+  ->  ( x  e.  RR+  |->  ( ( log `  x )  /  ( x  ^c  ( 1  -  A ) ) ) )  ~~> r  0 )
7727, 76syl 17 . . . . . 6  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) )  ~~> r  0 )
7875, 77rlimres2 14292 . . . . 5  |-  ( ph  ->  ( x  e.  ( 2 [,) +oo )  |->  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) )  ~~> r  0 )
79 o1rlimmul 14349 . . . . 5  |-  ( ( ( x  e.  ( 2 [,) +oo )  |->  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  e.  O(1)  /\  ( x  e.  ( 2 [,) +oo )  |->  ( ( log `  x )  /  ( x  ^c  ( 1  -  A ) ) ) )  ~~> r  0 )  ->  ( ( x  e.  ( 2 [,) +oo )  |->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  oF  x.  ( x  e.  ( 2 [,) +oo )  |->  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) ) )  ~~> r  0 )
8073, 78, 79sylancr 695 . . . 4  |-  ( ph  ->  ( ( x  e.  ( 2 [,) +oo )  |->  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )  oF  x.  (
x  e.  ( 2 [,) +oo )  |->  ( ( log `  x
)  /  ( x  ^c  ( 1  -  A ) ) ) ) )  ~~> r  0 )
8172, 80eqbrtrrd 4677 . . 3  |-  ( ph  ->  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  ^c  A )  /  (π `  x ) ) )  ~~> r  0 )
8222, 27, 81rlimi 14244 . 2  |-  ( ph  ->  E. z  e.  RR  A. x  e.  ( 2 [,) +oo ) ( z  <_  x  ->  ( abs `  ( ( ( x  ^c  A )  /  (π `  x ) )  - 
0 ) )  < 
( 1  -  A
) ) )
8321rpcnd 11874 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  ^c  A )  /  (π `  x ) )  e.  CC )
8483subid1d 10381 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( ( x  ^c  A )  /  (π `  x ) )  - 
0 )  =  ( ( x  ^c  A )  /  (π `  x ) ) )
8584fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  ( abs `  ( ( ( x  ^c  A )  /  (π `  x
) )  -  0 ) )  =  ( abs `  ( ( x  ^c  A )  /  (π `  x
) ) ) )
8621rpred 11872 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  ^c  A )  /  (π `  x ) )  e.  RR )
8721rpge0d 11876 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  0  <_  ( ( x  ^c  A )  /  (π `  x ) ) )
8886, 87absidd 14161 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  ( abs `  ( ( x  ^c  A )  /  (π `  x ) ) )  =  ( ( x  ^c  A )  /  (π `  x
) ) )
8985, 88eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  ( abs `  ( ( ( x  ^c  A )  /  (π `  x
) )  -  0 ) )  =  ( ( x  ^c  A )  /  (π `  x ) ) )
9089breq1d 4663 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( abs `  (
( ( x  ^c  A )  /  (π `  x ) )  - 
0 ) )  < 
( 1  -  A
)  <->  ( ( x  ^c  A )  /  (π `  x ) )  <  ( 1  -  A ) ) )
9114adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( 2 [,) +oo )  /\  ( ( x  ^c  A )  /  (π `  x ) )  <  ( 1  -  A ) ) )  ->  A  e.  RR+ )
9223adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( 2 [,) +oo )  /\  ( ( x  ^c  A )  /  (π `  x ) )  <  ( 1  -  A ) ) )  ->  A  <  1
)
93 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( 2 [,) +oo )  /\  ( ( x  ^c  A )  /  (π `  x ) )  <  ( 1  -  A ) ) )  ->  x  e.  ( 2 [,) +oo )
)
94 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( 2 [,) +oo )  /\  ( ( x  ^c  A )  /  (π `  x ) )  <  ( 1  -  A ) ) )  ->  ( ( x  ^c  A )  /  (π `  x ) )  <  ( 1  -  A ) )
9591, 92, 93, 94chtppilimlem1 25162 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( 2 [,) +oo )  /\  ( ( x  ^c  A )  /  (π `  x ) )  <  ( 1  -  A ) ) )  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x
) ) )  < 
( theta `  x )
)
9695expr 643 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( ( x  ^c  A )  /  (π `  x ) )  < 
( 1  -  A
)  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x
) ) )  < 
( theta `  x )
) )
9790, 96sylbid 230 . . . . 5  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( abs `  (
( ( x  ^c  A )  /  (π `  x ) )  - 
0 ) )  < 
( 1  -  A
)  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x
) ) )  < 
( theta `  x )
) )
9897imim2d 57 . . . 4  |-  ( (
ph  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( z  <_  x  ->  ( abs `  (
( ( x  ^c  A )  /  (π `  x ) )  - 
0 ) )  < 
( 1  -  A
) )  ->  (
z  <_  x  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x ) ) )  <  ( theta `  x ) ) ) )
9998ralimdva 2962 . . 3  |-  ( ph  ->  ( A. x  e.  ( 2 [,) +oo ) ( z  <_  x  ->  ( abs `  (
( ( x  ^c  A )  /  (π `  x ) )  - 
0 ) )  < 
( 1  -  A
) )  ->  A. x  e.  ( 2 [,) +oo ) ( z  <_  x  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x
) ) )  < 
( theta `  x )
) ) )
10099reximdv 3016 . 2  |-  ( ph  ->  ( E. z  e.  RR  A. x  e.  ( 2 [,) +oo ) ( z  <_  x  ->  ( abs `  (
( ( x  ^c  A )  /  (π `  x ) )  - 
0 ) )  < 
( 1  -  A
) )  ->  E. z  e.  RR  A. x  e.  ( 2 [,) +oo ) ( z  <_  x  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x
) ) )  < 
( theta `  x )
) ) )
10182, 100mpd 15 1  |-  ( ph  ->  E. z  e.  RR  A. x  e.  ( 2 [,) +oo ) ( z  <_  x  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x ) ) )  <  ( theta `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   RR+crp 11832   [,)cico 12177   ^cexp 12860   abscabs 13974    ~~> r crli 14216   O(1)co1 14217   logclog 24301    ^c ccxp 24302   thetaccht 24817  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-cht 24823  df-ppi 24826
This theorem is referenced by:  chtppilim  25164
  Copyright terms: Public domain W3C validator