MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabvcxp Structured version   Visualization version   Unicode version

Theorem padicabvcxp 25321
Description: All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
Assertion
Ref Expression
padicabvcxp  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) )  e.  A
)
Distinct variable groups:    x, q,
y    y, J    A, q, x, y    x, Q, y    P, q, x, y    R, q, y
Allowed substitution hints:    Q( q)    R( x)    J( x, q)

Proof of Theorem padicabvcxp
StepHypRef Expression
1 padic.j . . . . . . 7  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
21padicval 25306 . . . . . 6  |-  ( ( P  e.  Prime  /\  y  e.  QQ )  ->  (
( J `  P
) `  y )  =  if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) ) )
32adantlr 751 . . . . 5  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( ( J `
 P ) `  y )  =  if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) ) )
43oveq1d 6665 . . . 4  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( ( ( J `  P ) `
 y )  ^c  R )  =  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) )  ^c  R ) )
5 ovif 6737 . . . . 5  |-  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) )  ^c  R )  =  if ( y  =  0 ,  ( 0  ^c  R ) ,  ( ( P ^ -u ( P  pCnt  y ) )  ^c  R ) )
6 rpre 11839 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  R  e.  RR )
76adantl 482 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  R  e.  RR )
87recnd 10068 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  R  e.  CC )
9 rpne0 11848 . . . . . . . . 9  |-  ( R  e.  RR+  ->  R  =/=  0 )
109adantl 482 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  R  =/=  0 )
118, 100cxpd 24456 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
0  ^c  R )  =  0 )
1211adantr 481 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( 0  ^c  R )  =  0 )
1312ifeq1d 4104 . . . . 5  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  if ( y  =  0 ,  ( 0  ^c  R ) ,  ( ( P ^ -u ( P  pCnt  y ) )  ^c  R ) )  =  if ( y  =  0 ,  0 ,  ( ( P ^ -u ( P  pCnt  y ) )  ^c  R ) ) )
145, 13syl5eq 2668 . . . 4  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P 
pCnt  y ) ) )  ^c  R )  =  if ( y  =  0 ,  0 ,  ( ( P ^ -u ( P  pCnt  y ) )  ^c  R ) ) )
15 df-ne 2795 . . . . . 6  |-  ( y  =/=  0  <->  -.  y  =  0 )
16 pcqcl 15561 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
1716adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
1817zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  CC )
198adantr 481 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  R  e.  CC )
20 mulneg12 10468 . . . . . . . . . . . 12  |-  ( ( ( P  pCnt  y
)  e.  CC  /\  R  e.  CC )  ->  ( -u ( P 
pCnt  y )  x.  R )  =  ( ( P  pCnt  y
)  x.  -u R
) )
2118, 19, 20syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( -u ( P  pCnt  y )  x.  R )  =  ( ( P  pCnt  y
)  x.  -u R
) )
2219negcld 10379 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  -u R  e.  CC )
2318, 22mulcomd 10061 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P  pCnt  y )  x.  -u R )  =  (
-u R  x.  ( P  pCnt  y ) ) )
2421, 23eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( -u ( P  pCnt  y )  x.  R )  =  (
-u R  x.  ( P  pCnt  y ) ) )
2524oveq2d 6666 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^c  ( -u ( P  pCnt  y )  x.  R ) )  =  ( P  ^c 
( -u R  x.  ( P  pCnt  y ) ) ) )
26 prmuz2 15408 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2726adantr 481 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  ( ZZ>= `  2 )
)
28 eluz2b2 11761 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
2927, 28sylib 208 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  e.  NN  /\  1  <  P ) )
3029simpld 475 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  NN )
3130nnrpd 11870 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  RR+ )
3231adantr 481 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  P  e.  RR+ )
3317znegcld 11484 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  -u ( P 
pCnt  y )  e.  ZZ )
3433zred 11482 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  -u ( P 
pCnt  y )  e.  RR )
3532, 34, 19cxpmuld 24480 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^c  ( -u ( P  pCnt  y )  x.  R ) )  =  ( ( P  ^c  -u ( P  pCnt  y ) )  ^c  R ) )
367renegcld 10457 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  -u R  e.  RR )
3736adantr 481 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  -u R  e.  RR )
3832, 37, 18cxpmuld 24480 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^c  ( -u R  x.  ( P  pCnt  y
) ) )  =  ( ( P  ^c  -u R )  ^c  ( P  pCnt  y ) ) )
3925, 35, 383eqtr3d 2664 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P  ^c  -u ( P  pCnt  y ) )  ^c  R )  =  ( ( P  ^c  -u R
)  ^c  ( P  pCnt  y )
) )
4030nnred 11035 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  RR )
4140recnd 10068 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  CC )
4241adantr 481 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  P  e.  CC )
4330nnne0d 11065 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  =/=  0 )
4443adantr 481 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  P  =/=  0 )
4542, 44, 33cxpexpzd 24457 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^c  -u ( P 
pCnt  y ) )  =  ( P ^ -u ( P  pCnt  y
) ) )
4645oveq1d 6665 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P  ^c  -u ( P  pCnt  y ) )  ^c  R )  =  ( ( P ^ -u ( P 
pCnt  y ) )  ^c  R ) )
4731, 36rpcxpcld 24476 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^c  -u R
)  e.  RR+ )
4847adantr 481 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^c  -u R )  e.  RR+ )
4948rpcnd 11874 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^c  -u R )  e.  CC )
50 rpne0 11848 . . . . . . . . . 10  |-  ( ( P  ^c  -u R )  e.  RR+  ->  ( P  ^c  -u R )  =/=  0
)
5148, 50syl 17 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^c  -u R )  =/=  0 )
5249, 51, 17cxpexpzd 24457 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P  ^c  -u R
)  ^c  ( P  pCnt  y )
)  =  ( ( P  ^c  -u R ) ^ ( P  pCnt  y ) ) )
5339, 46, 523eqtr3d 2664 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P ^ -u ( P 
pCnt  y ) )  ^c  R )  =  ( ( P  ^c  -u R
) ^ ( P 
pCnt  y ) ) )
5453anassrs 680 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  /\  y  =/=  0
)  ->  ( ( P ^ -u ( P 
pCnt  y ) )  ^c  R )  =  ( ( P  ^c  -u R
) ^ ( P 
pCnt  y ) ) )
5515, 54sylan2br 493 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  /\  -.  y  =  0 )  ->  (
( P ^ -u ( P  pCnt  y ) )  ^c  R )  =  ( ( P  ^c  -u R
) ^ ( P 
pCnt  y ) ) )
5655ifeq2da 4117 . . . 4  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  if ( y  =  0 ,  0 ,  ( ( P ^ -u ( P 
pCnt  y ) )  ^c  R ) )  =  if ( y  =  0 ,  0 ,  ( ( P  ^c  -u R ) ^ ( P  pCnt  y ) ) ) )
574, 14, 563eqtrd 2660 . . 3  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( ( ( J `  P ) `
 y )  ^c  R )  =  if ( y  =  0 ,  0 ,  ( ( P  ^c  -u R ) ^ ( P  pCnt  y ) ) ) )
5857mpteq2dva 4744 . 2  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) )  =  ( y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^c  -u R ) ^ ( P  pCnt  y ) ) ) ) )
59 rpre 11839 . . . . 5  |-  ( ( P  ^c  -u R )  e.  RR+  ->  ( P  ^c  -u R )  e.  RR )
6047, 59syl 17 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^c  -u R
)  e.  RR )
61 rpgt0 11844 . . . . 5  |-  ( ( P  ^c  -u R )  e.  RR+  ->  0  <  ( P  ^c  -u R
) )
6247, 61syl 17 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  0  <  ( P  ^c  -u R ) )
63 rpgt0 11844 . . . . . . . 8  |-  ( R  e.  RR+  ->  0  < 
R )
6463adantl 482 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  0  <  R )
657lt0neg2d 10598 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
0  <  R  <->  -u R  <  0 ) )
6664, 65mpbid 222 . . . . . 6  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  -u R  <  0 )
6729simprd 479 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  1  <  P )
68 0red 10041 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  0  e.  RR )
6940, 67, 36, 68cxpltd 24465 . . . . . 6  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( -u R  <  0  <->  ( P  ^c  -u R
)  <  ( P  ^c  0 ) ) )
7066, 69mpbid 222 . . . . 5  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^c  -u R
)  <  ( P  ^c  0 ) )
7141cxp0d 24451 . . . . 5  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^c  0 )  =  1 )
7270, 71breqtrd 4679 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^c  -u R
)  <  1 )
73 0xr 10086 . . . . 5  |-  0  e.  RR*
74 1re 10039 . . . . . 6  |-  1  e.  RR
7574rexri 10097 . . . . 5  |-  1  e.  RR*
76 elioo2 12216 . . . . 5  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( P  ^c  -u R )  e.  ( 0 (,) 1 )  <-> 
( ( P  ^c  -u R )  e.  RR  /\  0  < 
( P  ^c  -u R )  /\  ( P  ^c  -u R
)  <  1 ) ) )
7773, 75, 76mp2an 708 . . . 4  |-  ( ( P  ^c  -u R )  e.  ( 0 (,) 1 )  <-> 
( ( P  ^c  -u R )  e.  RR  /\  0  < 
( P  ^c  -u R )  /\  ( P  ^c  -u R
)  <  1 ) )
7860, 62, 72, 77syl3anbrc 1246 . . 3  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^c  -u R
)  e.  ( 0 (,) 1 ) )
79 qrng.q . . . 4  |-  Q  =  (flds  QQ )
80 qabsabv.a . . . 4  |-  A  =  (AbsVal `  Q )
81 eqid 2622 . . . 4  |-  ( y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^c  -u R ) ^ ( P  pCnt  y ) ) ) )  =  ( y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^c  -u R ) ^ ( P  pCnt  y ) ) ) )
8279, 80, 81padicabv 25319 . . 3  |-  ( ( P  e.  Prime  /\  ( P  ^c  -u R
)  e.  ( 0 (,) 1 ) )  ->  ( y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^c  -u R
) ^ ( P 
pCnt  y ) ) ) )  e.  A
)
8378, 82syldan 487 . 2  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^c  -u R ) ^ ( P  pCnt  y ) ) ) )  e.  A
)
8458, 83eqeltrd 2701 1  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   RR*cxr 10073    < clt 10074   -ucneg 10267   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   RR+crp 11832   (,)cioo 12175   ^cexp 12860   Primecprime 15385    pCnt cpc 15541   ↾s cress 15858  AbsValcabv 18816  ℂfldccnfld 19746    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-abv 18817  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  ostth3  25327  ostth  25328
  Copyright terms: Public domain W3C validator