MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1rem Structured version   Visualization version   Unicode version

Theorem ply1rem 23923
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 15260). If a polynomial  F is divided by the linear factor  x  -  A, the remainder is equal to  F ( A ), the evaluation of the polynomial at  A (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p  |-  P  =  (Poly1 `  R )
ply1rem.b  |-  B  =  ( Base `  P
)
ply1rem.k  |-  K  =  ( Base `  R
)
ply1rem.x  |-  X  =  (var1 `  R )
ply1rem.m  |-  .-  =  ( -g `  P )
ply1rem.a  |-  A  =  (algSc `  P )
ply1rem.g  |-  G  =  ( X  .-  ( A `  N )
)
ply1rem.o  |-  O  =  (eval1 `  R )
ply1rem.1  |-  ( ph  ->  R  e. NzRing )
ply1rem.2  |-  ( ph  ->  R  e.  CRing )
ply1rem.3  |-  ( ph  ->  N  e.  K )
ply1rem.4  |-  ( ph  ->  F  e.  B )
ply1rem.e  |-  E  =  (rem1p `  R )
Assertion
Ref Expression
ply1rem  |-  ( ph  ->  ( F E G )  =  ( A `
 ( ( O `
 F ) `  N ) ) )

Proof of Theorem ply1rem
StepHypRef Expression
1 ply1rem.1 . . . . . . . . 9  |-  ( ph  ->  R  e. NzRing )
2 nzrring 19261 . . . . . . . . 9  |-  ( R  e. NzRing  ->  R  e.  Ring )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
4 ply1rem.4 . . . . . . . 8  |-  ( ph  ->  F  e.  B )
5 ply1rem.p . . . . . . . . . . 11  |-  P  =  (Poly1 `  R )
6 ply1rem.b . . . . . . . . . . 11  |-  B  =  ( Base `  P
)
7 ply1rem.k . . . . . . . . . . 11  |-  K  =  ( Base `  R
)
8 ply1rem.x . . . . . . . . . . 11  |-  X  =  (var1 `  R )
9 ply1rem.m . . . . . . . . . . 11  |-  .-  =  ( -g `  P )
10 ply1rem.a . . . . . . . . . . 11  |-  A  =  (algSc `  P )
11 ply1rem.g . . . . . . . . . . 11  |-  G  =  ( X  .-  ( A `  N )
)
12 ply1rem.o . . . . . . . . . . 11  |-  O  =  (eval1 `  R )
13 ply1rem.2 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CRing )
14 ply1rem.3 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  K )
15 eqid 2622 . . . . . . . . . . 11  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
16 eqid 2622 . . . . . . . . . . 11  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
17 eqid 2622 . . . . . . . . . . 11  |-  ( 0g
`  R )  =  ( 0g `  R
)
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 23922 . . . . . . . . . 10  |-  ( ph  ->  ( G  e.  (Monic1p `  R )  /\  (
( deg1  `
 R ) `  G )  =  1  /\  ( `' ( O `  G )
" { ( 0g
`  R ) } )  =  { N } ) )
1918simp1d 1073 . . . . . . . . 9  |-  ( ph  ->  G  e.  (Monic1p `  R
) )
20 eqid 2622 . . . . . . . . . 10  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
2120, 15mon1puc1p 23910 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  G  e.  (Monic1p `  R ) )  ->  G  e.  (Unic1p `  R ) )
223, 19, 21syl2anc 693 . . . . . . . 8  |-  ( ph  ->  G  e.  (Unic1p `  R
) )
23 ply1rem.e . . . . . . . . 9  |-  E  =  (rem1p `  R )
2423, 5, 6, 20, 16r1pdeglt 23918 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( ( deg1  `  R
) `  ( F E G ) )  < 
( ( deg1  `  R ) `  G ) )
253, 4, 22, 24syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( deg1  `  R ) `  ( F E G ) )  <  (
( deg1  `
 R ) `  G ) )
2618simp2d 1074 . . . . . . 7  |-  ( ph  ->  ( ( deg1  `  R ) `  G )  =  1 )
2725, 26breqtrd 4679 . . . . . 6  |-  ( ph  ->  ( ( deg1  `  R ) `  ( F E G ) )  <  1
)
28 1e0p1 11552 . . . . . 6  |-  1  =  ( 0  +  1 )
2927, 28syl6breq 4694 . . . . 5  |-  ( ph  ->  ( ( deg1  `  R ) `  ( F E G ) )  <  (
0  +  1 ) )
30 0nn0 11307 . . . . . 6  |-  0  e.  NN0
31 nn0leltp1 11436 . . . . . 6  |-  ( ( ( ( deg1  `  R ) `  ( F E G ) )  e.  NN0  /\  0  e.  NN0 )  ->  ( ( ( deg1  `  R
) `  ( F E G ) )  <_ 
0  <->  ( ( deg1  `  R
) `  ( F E G ) )  < 
( 0  +  1 ) ) )
3230, 31mpan2 707 . . . . 5  |-  ( ( ( deg1  `  R ) `  ( F E G ) )  e.  NN0  ->  ( ( ( deg1  `  R ) `  ( F E G ) )  <_  0  <->  ( ( deg1  `  R ) `  ( F E G ) )  <  ( 0  +  1 ) ) )
3329, 32syl5ibrcom 237 . . . 4  |-  ( ph  ->  ( ( ( deg1  `  R
) `  ( F E G ) )  e. 
NN0  ->  ( ( deg1  `  R
) `  ( F E G ) )  <_ 
0 ) )
34 elsni 4194 . . . . . 6  |-  ( ( ( deg1  `  R ) `  ( F E G ) )  e.  { -oo }  ->  ( ( deg1  `  R
) `  ( F E G ) )  = -oo )
35 0xr 10086 . . . . . . 7  |-  0  e.  RR*
36 mnfle 11969 . . . . . . 7  |-  ( 0  e.  RR*  -> -oo  <_  0 )
3735, 36ax-mp 5 . . . . . 6  |- -oo  <_  0
3834, 37syl6eqbr 4692 . . . . 5  |-  ( ( ( deg1  `  R ) `  ( F E G ) )  e.  { -oo }  ->  ( ( deg1  `  R
) `  ( F E G ) )  <_ 
0 )
3938a1i 11 . . . 4  |-  ( ph  ->  ( ( ( deg1  `  R
) `  ( F E G ) )  e. 
{ -oo }  ->  (
( deg1  `
 R ) `  ( F E G ) )  <_  0 ) )
4023, 5, 6, 20r1pcl 23917 . . . . . . 7  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( F E G )  e.  B
)
413, 4, 22, 40syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( F E G )  e.  B )
4216, 5, 6deg1cl 23843 . . . . . 6  |-  ( ( F E G )  e.  B  ->  (
( deg1  `
 R ) `  ( F E G ) )  e.  ( NN0 
u.  { -oo } ) )
4341, 42syl 17 . . . . 5  |-  ( ph  ->  ( ( deg1  `  R ) `  ( F E G ) )  e.  ( NN0  u.  { -oo } ) )
44 elun 3753 . . . . 5  |-  ( ( ( deg1  `  R ) `  ( F E G ) )  e.  ( NN0 
u.  { -oo } )  <-> 
( ( ( deg1  `  R
) `  ( F E G ) )  e. 
NN0  \/  ( ( deg1  `  R ) `  ( F E G ) )  e.  { -oo }
) )
4543, 44sylib 208 . . . 4  |-  ( ph  ->  ( ( ( deg1  `  R
) `  ( F E G ) )  e. 
NN0  \/  ( ( deg1  `  R ) `  ( F E G ) )  e.  { -oo }
) )
4633, 39, 45mpjaod 396 . . 3  |-  ( ph  ->  ( ( deg1  `  R ) `  ( F E G ) )  <_  0
)
4716, 5, 6, 10deg1le0 23871 . . . 4  |-  ( ( R  e.  Ring  /\  ( F E G )  e.  B )  ->  (
( ( deg1  `  R ) `  ( F E G ) )  <_  0  <->  ( F E G )  =  ( A `  ( (coe1 `  ( F E G ) ) ` 
0 ) ) ) )
483, 41, 47syl2anc 693 . . 3  |-  ( ph  ->  ( ( ( deg1  `  R
) `  ( F E G ) )  <_ 
0  <->  ( F E G )  =  ( A `  ( (coe1 `  ( F E G ) ) `  0
) ) ) )
4946, 48mpbid 222 . 2  |-  ( ph  ->  ( F E G )  =  ( A `
 ( (coe1 `  ( F E G ) ) `
 0 ) ) )
50 eqid 2622 . . . . . . . . 9  |-  (quot1p `  R
)  =  (quot1p `  R
)
51 eqid 2622 . . . . . . . . 9  |-  ( .r
`  P )  =  ( .r `  P
)
52 eqid 2622 . . . . . . . . 9  |-  ( +g  `  P )  =  ( +g  `  P )
535, 6, 20, 50, 23, 51, 52r1pid 23919 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  F  =  ( ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ( +g  `  P ) ( F E G ) ) )
543, 4, 22, 53syl3anc 1326 . . . . . . 7  |-  ( ph  ->  F  =  ( ( ( F (quot1p `  R
) G ) ( .r `  P ) G ) ( +g  `  P ) ( F E G ) ) )
5554fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( O `  F
)  =  ( O `
 ( ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ( +g  `  P
) ( F E G ) ) ) )
56 eqid 2622 . . . . . . . . . 10  |-  ( R  ^s  K )  =  ( R  ^s  K )
5712, 5, 56, 7evl1rhm 19696 . . . . . . . . 9  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
5813, 57syl 17 . . . . . . . 8  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
59 rhmghm 18725 . . . . . . . 8  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O  e.  ( P  GrpHom  ( R  ^s  K )
) )
6058, 59syl 17 . . . . . . 7  |-  ( ph  ->  O  e.  ( P 
GrpHom  ( R  ^s  K ) ) )
615ply1ring 19618 . . . . . . . . 9  |-  ( R  e.  Ring  ->  P  e. 
Ring )
623, 61syl 17 . . . . . . . 8  |-  ( ph  ->  P  e.  Ring )
6350, 5, 6, 20q1pcl 23915 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( F (quot1p `  R ) G )  e.  B )
643, 4, 22, 63syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( F (quot1p `  R
) G )  e.  B )
655, 6, 15mon1pcl 23904 . . . . . . . . 9  |-  ( G  e.  (Monic1p `  R )  ->  G  e.  B )
6619, 65syl 17 . . . . . . . 8  |-  ( ph  ->  G  e.  B )
676, 51ringcl 18561 . . . . . . . 8  |-  ( ( P  e.  Ring  /\  ( F (quot1p `  R ) G )  e.  B  /\  G  e.  B )  ->  ( ( F (quot1p `  R ) G ) ( .r `  P
) G )  e.  B )
6862, 64, 66, 67syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( F (quot1p `  R ) G ) ( .r `  P
) G )  e.  B )
69 eqid 2622 . . . . . . . 8  |-  ( +g  `  ( R  ^s  K ) )  =  ( +g  `  ( R  ^s  K ) )
706, 52, 69ghmlin 17665 . . . . . . 7  |-  ( ( O  e.  ( P 
GrpHom  ( R  ^s  K ) )  /\  ( ( F (quot1p `  R ) G ) ( .r `  P ) G )  e.  B  /\  ( F E G )  e.  B )  ->  ( O `  ( (
( F (quot1p `  R
) G ) ( .r `  P ) G ) ( +g  `  P ) ( F E G ) ) )  =  ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ) ( +g  `  ( R  ^s  K ) ) ( O `  ( F E G ) ) ) )
7160, 68, 41, 70syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( O `  (
( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ( +g  `  P ) ( F E G ) ) )  =  ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) ( +g  `  ( R  ^s  K ) ) ( O `  ( F E G ) ) ) )
72 eqid 2622 . . . . . . 7  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
73 fvex 6201 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
747, 73eqeltri 2697 . . . . . . . 8  |-  K  e. 
_V
7574a1i 11 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
766, 72rhmf 18726 . . . . . . . . 9  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
7758, 76syl 17 . . . . . . . 8  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
7877, 68ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  e.  ( Base `  ( R  ^s  K ) ) )
7977, 41ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( O `  ( F E G ) )  e.  ( Base `  ( R  ^s  K ) ) )
80 eqid 2622 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
8156, 72, 1, 75, 78, 79, 80, 69pwsplusgval 16150 . . . . . 6  |-  ( ph  ->  ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) ( +g  `  ( R  ^s  K ) ) ( O `  ( F E G ) ) )  =  ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )  oF ( +g  `  R ) ( O `  ( F E G ) ) ) )
8255, 71, 813eqtrd 2660 . . . . 5  |-  ( ph  ->  ( O `  F
)  =  ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )  oF ( +g  `  R ) ( O `  ( F E G ) ) ) )
8382fveq1d 6193 . . . 4  |-  ( ph  ->  ( ( O `  F ) `  N
)  =  ( ( ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  oF ( +g  `  R
) ( O `  ( F E G ) ) ) `  N
) )
8456, 7, 72, 1, 75, 78pwselbas 16149 . . . . . . 7  |-  ( ph  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) ) : K --> K )
85 ffn 6045 . . . . . . 7  |-  ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ) : K --> K  -> 
( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  Fn  K )
8684, 85syl 17 . . . . . 6  |-  ( ph  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  Fn  K )
8756, 7, 72, 1, 75, 79pwselbas 16149 . . . . . . 7  |-  ( ph  ->  ( O `  ( F E G ) ) : K --> K )
88 ffn 6045 . . . . . . 7  |-  ( ( O `  ( F E G ) ) : K --> K  -> 
( O `  ( F E G ) )  Fn  K )
8987, 88syl 17 . . . . . 6  |-  ( ph  ->  ( O `  ( F E G ) )  Fn  K )
90 fnfvof 6911 . . . . . 6  |-  ( ( ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) )  Fn  K  /\  ( O `  ( F E G ) )  Fn  K )  /\  ( K  e.  _V  /\  N  e.  K ) )  -> 
( ( ( O `
 ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )  oF ( +g  `  R ) ( O `  ( F E G ) ) ) `  N )  =  ( ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ) `  N ) ( +g  `  R
) ( ( O `
 ( F E G ) ) `  N ) ) )
9186, 89, 75, 14, 90syl22anc 1327 . . . . 5  |-  ( ph  ->  ( ( ( O `
 ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )  oF ( +g  `  R ) ( O `  ( F E G ) ) ) `  N )  =  ( ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ) `  N ) ( +g  `  R
) ( ( O `
 ( F E G ) ) `  N ) ) )
92 eqid 2622 . . . . . . . . . . 11  |-  ( .r
`  ( R  ^s  K
) )  =  ( .r `  ( R  ^s  K ) )
936, 51, 92rhmmul 18727 . . . . . . . . . 10  |-  ( ( O  e.  ( P RingHom 
( R  ^s  K ) )  /\  ( F (quot1p `  R ) G )  e.  B  /\  G  e.  B )  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) ) )
9458, 64, 66, 93syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) ) )
9577, 64ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) )  e.  (
Base `  ( R  ^s  K ) ) )
9677, 66ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( O `  G
)  e.  ( Base `  ( R  ^s  K ) ) )
97 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
9856, 72, 1, 75, 95, 96, 97, 92pwsmulrval 16151 . . . . . . . . 9  |-  ( ph  ->  ( ( O `  ( F (quot1p `  R ) G ) ) ( .r
`  ( R  ^s  K
) ) ( O `
 G ) )  =  ( ( O `
 ( F (quot1p `  R ) G ) )  oF ( .r `  R ) ( O `  G
) ) )
9994, 98eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( O `  (
( F (quot1p `  R
) G ) ( .r `  P ) G ) )  =  ( ( O `  ( F (quot1p `  R ) G ) )  oF ( .r `  R
) ( O `  G ) ) )
10099fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) `
 N )  =  ( ( ( O `
 ( F (quot1p `  R ) G ) )  oF ( .r `  R ) ( O `  G
) ) `  N
) )
10156, 7, 72, 1, 75, 95pwselbas 16149 . . . . . . . . 9  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) ) : K --> K )
102 ffn 6045 . . . . . . . . 9  |-  ( ( O `  ( F (quot1p `  R ) G ) ) : K --> K  ->  ( O `  ( F (quot1p `  R ) G ) )  Fn  K
)
103101, 102syl 17 . . . . . . . 8  |-  ( ph  ->  ( O `  ( F (quot1p `  R ) G ) )  Fn  K
)
10456, 7, 72, 1, 75, 96pwselbas 16149 . . . . . . . . 9  |-  ( ph  ->  ( O `  G
) : K --> K )
105 ffn 6045 . . . . . . . . 9  |-  ( ( O `  G ) : K --> K  -> 
( O `  G
)  Fn  K )
106104, 105syl 17 . . . . . . . 8  |-  ( ph  ->  ( O `  G
)  Fn  K )
107 fnfvof 6911 . . . . . . . 8  |-  ( ( ( ( O `  ( F (quot1p `  R ) G ) )  Fn  K  /\  ( O `  G
)  Fn  K )  /\  ( K  e. 
_V  /\  N  e.  K ) )  -> 
( ( ( O `
 ( F (quot1p `  R ) G ) )  oF ( .r `  R ) ( O `  G
) ) `  N
)  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  N
) ( .r `  R ) ( ( O `  G ) `
 N ) ) )
108103, 106, 75, 14, 107syl22anc 1327 . . . . . . 7  |-  ( ph  ->  ( ( ( O `
 ( F (quot1p `  R ) G ) )  oF ( .r `  R ) ( O `  G
) ) `  N
)  =  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  N
) ( .r `  R ) ( ( O `  G ) `
 N ) ) )
109 snidg 4206 . . . . . . . . . . . . 13  |-  ( N  e.  K  ->  N  e.  { N } )
11014, 109syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  { N } )
11118simp3d 1075 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' ( O `
 G ) " { ( 0g `  R ) } )  =  { N }
)
112110, 111eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( `' ( O `  G
) " { ( 0g `  R ) } ) )
113 fniniseg 6338 . . . . . . . . . . . 12  |-  ( ( O `  G )  Fn  K  ->  ( N  e.  ( `' ( O `  G )
" { ( 0g
`  R ) } )  <->  ( N  e.  K  /\  ( ( O `  G ) `
 N )  =  ( 0g `  R
) ) ) )
114106, 113syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  ( `' ( O `  G ) " {
( 0g `  R
) } )  <->  ( N  e.  K  /\  (
( O `  G
) `  N )  =  ( 0g `  R ) ) ) )
115112, 114mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( N  e.  K  /\  ( ( O `  G ) `  N
)  =  ( 0g
`  R ) ) )
116115simprd 479 . . . . . . . . 9  |-  ( ph  ->  ( ( O `  G ) `  N
)  =  ( 0g
`  R ) )
117116oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( ( ( O `
 ( F (quot1p `  R ) G ) ) `  N ) ( .r `  R
) ( ( O `
 G ) `  N ) )  =  ( ( ( O `
 ( F (quot1p `  R ) G ) ) `  N ) ( .r `  R
) ( 0g `  R ) ) )
118101, 14ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( ( O `  ( F (quot1p `  R ) G ) ) `  N
)  e.  K )
1197, 97, 17ringrz 18588 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( O `  ( F (quot1p `  R ) G ) ) `  N
)  e.  K )  ->  ( ( ( O `  ( F (quot1p `  R ) G ) ) `  N
) ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
1203, 118, 119syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( ( O `
 ( F (quot1p `  R ) G ) ) `  N ) ( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) )
121117, 120eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( ( O `
 ( F (quot1p `  R ) G ) ) `  N ) ( .r `  R
) ( ( O `
 G ) `  N ) )  =  ( 0g `  R
) )
122100, 108, 1213eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( ( O `  ( ( F (quot1p `  R ) G ) ( .r `  P
) G ) ) `
 N )  =  ( 0g `  R
) )
123122oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( ( O `
 ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) ) `  N ) ( +g  `  R
) ( ( O `
 ( F E G ) ) `  N ) )  =  ( ( 0g `  R ) ( +g  `  R ) ( ( O `  ( F E G ) ) `
 N ) ) )
124 ringgrp 18552 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
1253, 124syl 17 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
12687, 14ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( ( O `  ( F E G ) ) `  N )  e.  K )
1277, 80, 17grplid 17452 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( O `  ( F E G ) ) `  N )  e.  K )  -> 
( ( 0g `  R ) ( +g  `  R ) ( ( O `  ( F E G ) ) `
 N ) )  =  ( ( O `
 ( F E G ) ) `  N ) )
128125, 126, 127syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( 0g `  R ) ( +g  `  R ) ( ( O `  ( F E G ) ) `
 N ) )  =  ( ( O `
 ( F E G ) ) `  N ) )
12991, 123, 1283eqtrd 2660 . . . 4  |-  ( ph  ->  ( ( ( O `
 ( ( F (quot1p `  R ) G ) ( .r `  P ) G ) )  oF ( +g  `  R ) ( O `  ( F E G ) ) ) `  N )  =  ( ( O `
 ( F E G ) ) `  N ) )
13049fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( O `  ( F E G ) )  =  ( O `  ( A `  ( (coe1 `  ( F E G ) ) `  0
) ) ) )
131 eqid 2622 . . . . . . . . . . 11  |-  (coe1 `  ( F E G ) )  =  (coe1 `  ( F E G ) )
132131, 6, 5, 7coe1f 19581 . . . . . . . . . 10  |-  ( ( F E G )  e.  B  ->  (coe1 `  ( F E G ) ) : NN0 --> K )
13341, 132syl 17 . . . . . . . . 9  |-  ( ph  ->  (coe1 `  ( F E G ) ) : NN0 --> K )
134 ffvelrn 6357 . . . . . . . . 9  |-  ( ( (coe1 `  ( F E G ) ) : NN0 --> K  /\  0  e.  NN0 )  ->  (
(coe1 `  ( F E G ) ) ` 
0 )  e.  K
)
135133, 30, 134sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( (coe1 `  ( F E G ) ) ` 
0 )  e.  K
)
13612, 5, 7, 10evl1sca 19698 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  (
(coe1 `  ( F E G ) ) ` 
0 )  e.  K
)  ->  ( O `  ( A `  (
(coe1 `  ( F E G ) ) ` 
0 ) ) )  =  ( K  X.  { ( (coe1 `  ( F E G ) ) `
 0 ) } ) )
13713, 135, 136syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( O `  ( A `  ( (coe1 `  ( F E G ) ) `  0 ) ) )  =  ( K  X.  { ( (coe1 `  ( F E G ) ) ` 
0 ) } ) )
138130, 137eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( O `  ( F E G ) )  =  ( K  X.  { ( (coe1 `  ( F E G ) ) `
 0 ) } ) )
139138fveq1d 6193 . . . . 5  |-  ( ph  ->  ( ( O `  ( F E G ) ) `  N )  =  ( ( K  X.  { ( (coe1 `  ( F E G ) ) `  0
) } ) `  N ) )
140 fvex 6201 . . . . . . 7  |-  ( (coe1 `  ( F E G ) ) `  0
)  e.  _V
141140fvconst2 6469 . . . . . 6  |-  ( N  e.  K  ->  (
( K  X.  {
( (coe1 `  ( F E G ) ) ` 
0 ) } ) `
 N )  =  ( (coe1 `  ( F E G ) ) ` 
0 ) )
14214, 141syl 17 . . . . 5  |-  ( ph  ->  ( ( K  X.  { ( (coe1 `  ( F E G ) ) `
 0 ) } ) `  N )  =  ( (coe1 `  ( F E G ) ) `
 0 ) )
143139, 142eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( O `  ( F E G ) ) `  N )  =  ( (coe1 `  ( F E G ) ) `
 0 ) )
14483, 129, 1433eqtrd 2660 . . 3  |-  ( ph  ->  ( ( O `  F ) `  N
)  =  ( (coe1 `  ( F E G ) ) `  0
) )
145144fveq2d 6195 . 2  |-  ( ph  ->  ( A `  (
( O `  F
) `  N )
)  =  ( A `
 ( (coe1 `  ( F E G ) ) `
 0 ) ) )
14649, 145eqtr4d 2659 1  |-  ( ph  ->  ( F E G )  =  ( A `
 ( ( O `
 F ) `  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   {csn 4177   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   0cc0 9936   1c1 9937    + caddc 9939   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   NN0cn0 11292   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100    ^s cpws 16107   Grpcgrp 17422   -gcsg 17424    GrpHom cghm 17657   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712  NzRingcnzr 19257  algSccascl 19311  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548  eval1ce1 19679   deg1 cdg1 23814  Monic1pcmn1 23885  Unic1pcuc1p 23886  quot1pcq1p 23887  rem1pcr1p 23888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-nzr 19258  df-rlreg 19283  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-mdeg 23815  df-deg1 23816  df-mon1 23890  df-uc1p 23891  df-q1p 23892  df-r1p 23893
This theorem is referenced by:  facth1  23924
  Copyright terms: Public domain W3C validator