MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiveq Structured version   Visualization version   Unicode version

Theorem prmdiveq 15491
Description: The modular inverse of  A  mod  P is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdiveq  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )

Proof of Theorem prmdiveq
StepHypRef Expression
1 simprr 796 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  S )  - 
1 ) )
2 prmdiv.1 . . . . . . . . . . 11  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
32prmdiv 15490 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
43adantr 481 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) ) )
54simprd 479 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  R )  - 
1 ) )
6 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  Prime )
7 prmz 15389 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
86, 7syl 17 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  ZZ )
9 simpl2 1065 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  ZZ )
10 elfzelz 12342 . . . . . . . . . . . 12  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  ZZ )
1110ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  ZZ )
129, 11zmulcld 11488 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  ZZ )
13 1z 11407 . . . . . . . . . 10  |-  1  e.  ZZ
14 zsubcl 11419 . . . . . . . . . 10  |-  ( ( ( A  x.  S
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  S )  -  1 )  e.  ZZ )
1512, 13, 14sylancl 694 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  S )  -  1 )  e.  ZZ )
164simpld 475 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ( 1 ... ( P  - 
1 ) ) )
17 elfzelz 12342 . . . . . . . . . . . 12  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ZZ )
1816, 17syl 17 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ZZ )
199, 18zmulcld 11488 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  ZZ )
20 zsubcl 11419 . . . . . . . . . 10  |-  ( ( ( A  x.  R
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  R )  -  1 )  e.  ZZ )
2119, 13, 20sylancl 694 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  R )  -  1 )  e.  ZZ )
22 dvds2sub 15016 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( A  x.  S )  -  1 )  e.  ZZ  /\  ( ( A  x.  R )  -  1 )  e.  ZZ )  ->  ( ( P 
||  ( ( A  x.  S )  - 
1 )  /\  P  ||  ( ( A  x.  R )  -  1 ) )  ->  P  ||  ( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) ) ) )
238, 15, 21, 22syl3anc 1326 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( P  ||  ( ( A  x.  S )  -  1 )  /\  P  ||  ( ( A  x.  R )  -  1 ) )  ->  P  ||  ( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) ) ) )
241, 5, 23mp2and 715 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( ( A  x.  S )  -  1 )  -  ( ( A  x.  R )  -  1 ) ) )
2512zcnd 11483 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  CC )
2619zcnd 11483 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  CC )
27 1cnd 10056 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
1  e.  CC )
2825, 26, 27nnncan2d 10427 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
299zcnd 11483 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  CC )
30 elfznn0 12433 . . . . . . . . . . . 12  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  NN0 )
3130ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  NN0 )
3231nn0red 11352 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  RR )
3332recnd 10068 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  CC )
3418zcnd 11483 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  CC )
3529, 33, 34subdid 10486 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  ( S  -  R )
)  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
3628, 35eqtr4d 2659 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( A  x.  ( S  -  R ) ) )
3724, 36breqtrd 4679 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( A  x.  ( S  -  R
) ) )
38 simpl3 1066 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  -.  P  ||  A )
39 coprm 15423 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
406, 9, 39syl2anc 693 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( -.  P  ||  A 
<->  ( P  gcd  A
)  =  1 ) )
4138, 40mpbid 222 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  gcd  A
)  =  1 )
4211, 18zsubcld 11487 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  -  R
)  e.  ZZ )
43 coprmdvds 15366 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ  /\  ( S  -  R )  e.  ZZ )  ->  (
( P  ||  ( A  x.  ( S  -  R ) )  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R ) ) )
448, 9, 42, 43syl3anc 1326 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( P  ||  ( A  x.  ( S  -  R )
)  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R )
) )
4537, 41, 44mp2and 715 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( S  -  R ) )
46 prmnn 15388 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
476, 46syl 17 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  NN )
48 moddvds 14991 . . . . . 6  |-  ( ( P  e.  NN  /\  S  e.  ZZ  /\  R  e.  ZZ )  ->  (
( S  mod  P
)  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
4947, 11, 18, 48syl3anc 1326 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( S  mod  P )  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
5045, 49mpbird 247 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  ( R  mod  P ) )
5147nnrpd 11870 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  RR+ )
52 elfzle1 12344 . . . . . 6  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  0  <_  S )
5352ad2antrl 764 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
0  <_  S )
54 elfzle2 12345 . . . . . . 7  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  <_  ( P  -  1 ) )
5554ad2antrl 764 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <_  ( P  - 
1 ) )
56 zltlem1 11430 . . . . . . 7  |-  ( ( S  e.  ZZ  /\  P  e.  ZZ )  ->  ( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
5711, 8, 56syl2anc 693 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
5855, 57mpbird 247 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <  P )
59 modid 12695 . . . . 5  |-  ( ( ( S  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  S  /\  S  <  P ) )  ->  ( S  mod  P )  =  S )
6032, 51, 53, 58, 59syl22anc 1327 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  S )
61 prmuz2 15408 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
62 uznn0sub 11719 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  2 )  e. 
NN0 )
636, 61, 623syl 18 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  -  2 )  e.  NN0 )
64 zexpcl 12875 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
659, 63, 64syl2anc 693 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  ZZ )
6665zred 11482 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  RR )
67 modabs2 12704 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
6866, 51, 67syl2anc 693 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
692oveq1i 6660 . . . . 5  |-  ( R  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)
7068, 69, 23eqtr4g 2681 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  mod  P
)  =  R )
7150, 60, 703eqtr3d 2664 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  =  R )
7271ex 450 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  ->  S  =  R ) )
73 1e0p1 11552 . . . . . . . 8  |-  1  =  ( 0  +  1 )
7473oveq1i 6660 . . . . . . 7  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
75 0z 11388 . . . . . . . 8  |-  0  e.  ZZ
76 fzp1ss 12392 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( P  -  1 ) ) 
C_  ( 0 ... ( P  -  1 ) ) )
7775, 76ax-mp 5 . . . . . . 7  |-  ( ( 0  +  1 ) ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
7874, 77eqsstri 3635 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
7978sseli 3599 . . . . 5  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
80 eleq1 2689 . . . . 5  |-  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  <->  R  e.  ( 0 ... ( P  -  1 ) ) ) )
8179, 80syl5ibr 236 . . . 4  |-  ( S  =  R  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  ->  S  e.  ( 0 ... ( P  - 
1 ) ) ) )
82 oveq2 6658 . . . . . . 7  |-  ( S  =  R  ->  ( A  x.  S )  =  ( A  x.  R ) )
8382oveq1d 6665 . . . . . 6  |-  ( S  =  R  ->  (
( A  x.  S
)  -  1 )  =  ( ( A  x.  R )  - 
1 ) )
8483breq2d 4665 . . . . 5  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  S )  - 
1 )  <->  P  ||  (
( A  x.  R
)  -  1 ) ) )
8584biimprd 238 . . . 4  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  R )  - 
1 )  ->  P  ||  ( ( A  x.  S )  -  1 ) ) )
8681, 85anim12d 586 . . 3  |-  ( S  =  R  ->  (
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) )  ->  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) ) )
873, 86syl5com 31 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  S )  - 
1 ) ) ) )
8872, 87impbid 202 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    mod cmo 12668   ^cexp 12860    || cdvds 14983    gcd cgcd 15216   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  prmdivdiv  15492  modprminveq  15505  wilthlem1  24794  wilthlem2  24795
  Copyright terms: Public domain W3C validator