MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv Structured version   Visualization version   Unicode version

Theorem pserdv 24183
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
pserdv.b  |-  B  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) )
Assertion
Ref Expression
pserdv  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) ) )
Distinct variable groups:    j, a,
k, n, r, x, y, A    j, M, k, y    B, j, k, x, y    j, G, k, r, y    S, a, j, k, y    F, a    ph, a, j, k, y
Allowed substitution hints:    ph( x, n, r)    B( n, r, a)    R( x, y, j, k, n, r, a)    S( x, n, r)    F( x, y, j, k, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem pserdv
StepHypRef Expression
1 dvfcn 23672 . . . . 5  |-  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC
2 ssid 3624 . . . . . . . . 9  |-  CC  C_  CC
32a1i 11 . . . . . . . 8  |-  ( ph  ->  CC  C_  CC )
4 pserf.g . . . . . . . . . 10  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
5 pserf.f . . . . . . . . . 10  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
6 pserf.a . . . . . . . . . 10  |-  ( ph  ->  A : NN0 --> CC )
7 pserf.r . . . . . . . . . 10  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
8 psercn.s . . . . . . . . . 10  |-  S  =  ( `' abs " (
0 [,) R ) )
9 psercn.m . . . . . . . . . 10  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
104, 5, 6, 7, 8, 9psercn 24180 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
11 cncff 22696 . . . . . . . . 9  |-  ( F  e.  ( S -cn-> CC )  ->  F : S
--> CC )
1210, 11syl 17 . . . . . . . 8  |-  ( ph  ->  F : S --> CC )
13 cnvimass 5485 . . . . . . . . . . 11  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
14 absf 14077 . . . . . . . . . . . 12  |-  abs : CC
--> RR
1514fdmi 6052 . . . . . . . . . . 11  |-  dom  abs  =  CC
1613, 15sseqtri 3637 . . . . . . . . . 10  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
178, 16eqsstri 3635 . . . . . . . . 9  |-  S  C_  CC
1817a1i 11 . . . . . . . 8  |-  ( ph  ->  S  C_  CC )
193, 12, 18dvbss 23665 . . . . . . 7  |-  ( ph  ->  dom  ( CC  _D  F )  C_  S
)
202a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  CC  C_  CC )
2112adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  F : S --> CC )
2217a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  S  C_  CC )
23 pserdv.b . . . . . . . . . . . . . 14  |-  B  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) )
24 cnxmet 22576 . . . . . . . . . . . . . . . 16  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2524a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
26 0cnd 10033 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  CC )
2718sselda 3603 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
2827abscld 14175 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
294, 5, 6, 7, 8, 9psercnlem1 24179 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
3029simp1d 1073 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
3130rpred 11872 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR )
3228, 31readdcld 10069 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  +  M )  e.  RR )
33 0red 10041 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  RR )
3427absge0d 14183 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  0  <_  ( abs `  a
) )
3528, 30ltaddrpd 11905 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
( ( abs `  a
)  +  M ) )
3633, 28, 32, 34, 35lelttrd 10195 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  a  e.  S )  ->  0  <  ( ( abs `  a
)  +  M ) )
3732, 36elrpd 11869 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  +  M )  e.  RR+ )
3837rphalfcld 11884 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  e.  RR+ )
3938rpxrd 11873 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( abs `  a
)  +  M )  /  2 )  e. 
RR* )
40 blssm 22223 . . . . . . . . . . . . . . 15  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
( ( abs `  a
)  +  M )  /  2 )  e. 
RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a )  +  M
)  /  2 ) )  C_  CC )
4125, 26, 39, 40syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a )  +  M
)  /  2 ) )  C_  CC )
4223, 41syl5eqss 3649 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  B  C_  CC )
43 eqid 2622 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4443cnfldtop 22587 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  e.  Top
4543cnfldtopon 22586 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4645toponunii 20721 . . . . . . . . . . . . . . . . 17  |-  CC  =  U. ( TopOpen ` fld )
4746restid 16094 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
4844, 47ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
4948eqcomi 2631 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
5043, 49dvres 23675 . . . . . . . . . . . . 13  |-  ( ( ( CC  C_  CC  /\  F : S --> CC )  /\  ( S  C_  CC  /\  B  C_  CC ) )  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) ) )
5120, 21, 22, 42, 50syl22anc 1327 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) ) )
52 resss 5422 . . . . . . . . . . . 12  |-  ( ( CC  _D  F )  |`  ( ( int `  ( TopOpen
` fld
) ) `  B
) )  C_  ( CC  _D  F )
5351, 52syl6eqss 3655 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  ( CC  _D  ( F  |`  B ) )  C_  ( CC  _D  F
) )
54 dmss 5323 . . . . . . . . . . 11  |-  ( ( CC  _D  ( F  |`  B ) )  C_  ( CC  _D  F
)  ->  dom  ( CC 
_D  ( F  |`  B ) )  C_  dom  ( CC  _D  F
) )
5553, 54syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  dom  ( CC  _D  ( F  |`  B ) ) 
C_  dom  ( CC  _D  F ) )
564, 5, 6, 7, 8, 9pserdvlem1 24181 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( abs `  a )  +  M
)  /  2 )  e.  RR+  /\  ( abs `  a )  < 
( ( ( abs `  a )  +  M
)  /  2 )  /\  ( ( ( abs `  a )  +  M )  / 
2 )  <  R
) )
574, 5, 6, 7, 8, 56psercnlem2 24178 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a )  +  M
)  /  2 ) )  /\  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a )  +  M
)  /  2 ) )  C_  ( `' abs " ( 0 [,] ( ( ( abs `  a )  +  M
)  /  2 ) ) )  /\  ( `' abs " ( 0 [,] ( ( ( abs `  a )  +  M )  / 
2 ) ) ) 
C_  S ) )
5857simp1d 1073 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) ) )
5958, 23syl6eleqr 2712 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  B )
604, 5, 6, 7, 8, 9, 23pserdvlem2 24182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  ( CC  _D  ( F  |`  B ) )  =  ( y  e.  B  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) ) )
6160dmeqd 5326 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  dom  ( CC  _D  ( F  |`  B ) )  =  dom  ( y  e.  B  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) ) )
62 dmmptg 5632 . . . . . . . . . . . . 13  |-  ( A. y  e.  B  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( y ^
k ) )  e. 
_V  ->  dom  ( y  e.  B  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) )  =  B )
63 sumex 14418 . . . . . . . . . . . . . 14  |-  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) )  e.  _V
6463a1i 11 . . . . . . . . . . . . 13  |-  ( y  e.  B  ->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) )  e.  _V )
6562, 64mprg 2926 . . . . . . . . . . . 12  |-  dom  (
y  e.  B  |->  sum_ k  e.  NN0  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k ) ) )  =  B
6661, 65syl6eq 2672 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  dom  ( CC  _D  ( F  |`  B ) )  =  B )
6759, 66eleqtrrd 2704 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  dom  ( CC  _D  ( F  |`  B ) ) )
6855, 67sseldd 3604 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  dom  ( CC  _D  F ) )
6968ex 450 . . . . . . . 8  |-  ( ph  ->  ( a  e.  S  ->  a  e.  dom  ( CC  _D  F ) ) )
7069ssrdv 3609 . . . . . . 7  |-  ( ph  ->  S  C_  dom  ( CC 
_D  F ) )
7119, 70eqssd 3620 . . . . . 6  |-  ( ph  ->  dom  ( CC  _D  F )  =  S )
7271feq2d 6031 . . . . 5  |-  ( ph  ->  ( ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC  <->  ( CC  _D  F ) : S --> CC ) )
731, 72mpbii 223 . . . 4  |-  ( ph  ->  ( CC  _D  F
) : S --> CC )
7473feqmptd 6249 . . 3  |-  ( ph  ->  ( CC  _D  F
)  =  ( a  e.  S  |->  ( ( CC  _D  F ) `
 a ) ) )
75 ffun 6048 . . . . . . 7  |-  ( ( CC  _D  F ) : dom  ( CC 
_D  F ) --> CC 
->  Fun  ( CC  _D  F ) )
761, 75mp1i 13 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  Fun  ( CC  _D  F
) )
77 funssfv 6209 . . . . . 6  |-  ( ( Fun  ( CC  _D  F )  /\  ( CC  _D  ( F  |`  B ) )  C_  ( CC  _D  F
)  /\  a  e.  dom  ( CC  _D  ( F  |`  B ) ) )  ->  ( ( CC  _D  F ) `  a )  =  ( ( CC  _D  ( F  |`  B ) ) `
 a ) )
7876, 53, 67, 77syl3anc 1326 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( CC  _D  F
) `  a )  =  ( ( CC 
_D  ( F  |`  B ) ) `  a ) )
7960fveq1d 6193 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( CC  _D  ( F  |`  B ) ) `
 a )  =  ( ( y  e.  B  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) ) `  a
) )
80 oveq1 6657 . . . . . . . . 9  |-  ( y  =  a  ->  (
y ^ k )  =  ( a ^
k ) )
8180oveq2d 6666 . . . . . . . 8  |-  ( y  =  a  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) )
8281sumeq2sdv 14435 . . . . . . 7  |-  ( y  =  a  ->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) )  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( a ^
k ) ) )
83 eqid 2622 . . . . . . 7  |-  ( y  e.  B  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) )  =  ( y  e.  B  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) )
84 sumex 14418 . . . . . . 7  |-  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) )  e.  _V
8582, 83, 84fvmpt 6282 . . . . . 6  |-  ( a  e.  B  ->  (
( y  e.  B  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) ) `  a
)  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) )
8659, 85syl 17 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( y  e.  B  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) ) `  a
)  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) )
8778, 79, 863eqtrd 2660 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
( CC  _D  F
) `  a )  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
a ^ k ) ) )
8887mpteq2dva 4744 . . 3  |-  ( ph  ->  ( a  e.  S  |->  ( ( CC  _D  F ) `  a
) )  =  ( a  e.  S  |->  sum_ k  e.  NN0  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k ) ) ) )
8974, 88eqtrd 2656 . 2  |-  ( ph  ->  ( CC  _D  F
)  =  ( a  e.  S  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) ) )
90 oveq1 6657 . . . . 5  |-  ( a  =  y  ->  (
a ^ k )  =  ( y ^
k ) )
9190oveq2d 6666 . . . 4  |-  ( a  =  y  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) )
9291sumeq2sdv 14435 . . 3  |-  ( a  =  y  ->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) )  =  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( y ^
k ) ) )
9392cbvmptv 4750 . 2  |-  ( a  e.  S  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( a ^ k
) ) )  =  ( y  e.  S  |-> 
sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  (
y ^ k ) ) )
9489, 93syl6eq 2672 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ k  e.  NN0  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( y ^ k
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    - cmin 10266    / cdiv 10684   2c2 11070   NN0cn0 11292   RR+crp 11832   [,)cico 12177   [,]cicc 12178    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416   ↾t crest 16081   TopOpenctopn 16082   *Metcxmt 19731   ballcbl 19733  ℂfldccnfld 19746   Topctop 20698   intcnt 20821   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131
This theorem is referenced by:  pserdv2  24184
  Copyright terms: Public domain W3C validator