MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvle Structured version   Visualization version   Unicode version

Theorem radcnvle 24174
Description: If  X is a convergent point of the infinite series, then  X is within the closed disk of radius  R centered at zero. Or, by contraposition, the series diverges at any point strictly more than  R from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
radcnv.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
radcnvle.x  |-  ( ph  ->  X  e.  CC )
radcnvle.a  |-  ( ph  ->  seq 0 (  +  ,  ( G `  X ) )  e. 
dom 
~~>  )
Assertion
Ref Expression
radcnvle  |-  ( ph  ->  ( abs `  X
)  <_  R )
Distinct variable groups:    x, n, A    G, r
Allowed substitution hints:    ph( x, n, r)    A( r)    R( x, n, r)    G( x, n)    X( x, n, r)

Proof of Theorem radcnvle
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  R  <  ( abs `  X ) )
2 iccssxr 12256 . . . . . . . 8  |-  ( 0 [,] +oo )  C_  RR*
3 pser.g . . . . . . . . 9  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
4 radcnv.a . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
5 radcnv.r . . . . . . . . 9  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
63, 4, 5radcnvcl 24171 . . . . . . . 8  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
72, 6sseldi 3601 . . . . . . 7  |-  ( ph  ->  R  e.  RR* )
87adantr 481 . . . . . 6  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  R  e.  RR* )
9 radcnvle.x . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
109abscld 14175 . . . . . . 7  |-  ( ph  ->  ( abs `  X
)  e.  RR )
1110adantr 481 . . . . . 6  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( abs `  X )  e.  RR )
12 0xr 10086 . . . . . . . . . . 11  |-  0  e.  RR*
13 pnfxr 10092 . . . . . . . . . . 11  |- +oo  e.  RR*
14 elicc1 12219 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  ( R  e.  ( 0 [,] +oo )  <->  ( R  e.  RR*  /\  0  <_  R  /\  R  <_ +oo )
) )
1512, 13, 14mp2an 708 . . . . . . . . . 10  |-  ( R  e.  ( 0 [,] +oo )  <->  ( R  e. 
RR*  /\  0  <_  R  /\  R  <_ +oo )
)
166, 15sylib 208 . . . . . . . . 9  |-  ( ph  ->  ( R  e.  RR*  /\  0  <_  R  /\  R  <_ +oo ) )
1716simp2d 1074 . . . . . . . 8  |-  ( ph  ->  0  <_  R )
18 ge0gtmnf 12003 . . . . . . . 8  |-  ( ( R  e.  RR*  /\  0  <_  R )  -> -oo  <  R )
197, 17, 18syl2anc 693 . . . . . . 7  |-  ( ph  -> -oo  <  R )
2019adantr 481 . . . . . 6  |-  ( (
ph  /\  R  <  ( abs `  X ) )  -> -oo  <  R
)
21 ressxr 10083 . . . . . . . . . 10  |-  RR  C_  RR*
2221, 10sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  ( abs `  X
)  e.  RR* )
2322adantr 481 . . . . . . . 8  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( abs `  X )  e.  RR* )
24 xrltle 11982 . . . . . . . 8  |-  ( ( R  e.  RR*  /\  ( abs `  X )  e. 
RR* )  ->  ( R  <  ( abs `  X
)  ->  R  <_  ( abs `  X ) ) )
258, 23, 24syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( R  <  ( abs `  X
)  ->  R  <_  ( abs `  X ) ) )
261, 25mpd 15 . . . . . 6  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  R  <_  ( abs `  X ) )
27 xrre 12000 . . . . . 6  |-  ( ( ( R  e.  RR*  /\  ( abs `  X
)  e.  RR )  /\  ( -oo  <  R  /\  R  <_  ( abs `  X ) ) )  ->  R  e.  RR )
288, 11, 20, 26, 27syl22anc 1327 . . . . 5  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  R  e.  RR )
29 avglt1 11270 . . . . 5  |-  ( ( R  e.  RR  /\  ( abs `  X )  e.  RR )  -> 
( R  <  ( abs `  X )  <->  R  <  ( ( R  +  ( abs `  X ) )  /  2 ) ) )
3028, 11, 29syl2anc 693 . . . 4  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( R  <  ( abs `  X
)  <->  R  <  ( ( R  +  ( abs `  X ) )  / 
2 ) ) )
311, 30mpbid 222 . . 3  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  R  <  ( ( R  +  ( abs `  X ) )  /  2 ) )
32 ssrab2 3687 . . . . . . 7  |-  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } 
C_  RR
3332, 21sstri 3612 . . . . . 6  |-  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } 
C_  RR*
3428, 11readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( R  +  ( abs `  X
) )  e.  RR )
3534rehalfcld 11279 . . . . . . 7  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( ( R  +  ( abs `  X ) )  / 
2 )  e.  RR )
364adantr 481 . . . . . . . 8  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  A : NN0
--> CC )
3735recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( ( R  +  ( abs `  X ) )  / 
2 )  e.  CC )
389adantr 481 . . . . . . . 8  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  X  e.  CC )
39 0red 10041 . . . . . . . . . . 11  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  0  e.  RR )
4017adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  0  <_  R )
4139, 28, 35, 40, 31lelttrd 10195 . . . . . . . . . . 11  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  0  <  ( ( R  +  ( abs `  X ) )  /  2 ) )
4239, 35, 41ltled 10185 . . . . . . . . . 10  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  0  <_  ( ( R  +  ( abs `  X ) )  /  2 ) )
4335, 42absidd 14161 . . . . . . . . 9  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( abs `  ( ( R  +  ( abs `  X ) )  /  2 ) )  =  ( ( R  +  ( abs `  X ) )  / 
2 ) )
44 avglt2 11271 . . . . . . . . . . 11  |-  ( ( R  e.  RR  /\  ( abs `  X )  e.  RR )  -> 
( R  <  ( abs `  X )  <->  ( ( R  +  ( abs `  X ) )  / 
2 )  <  ( abs `  X ) ) )
4528, 11, 44syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( R  <  ( abs `  X
)  <->  ( ( R  +  ( abs `  X
) )  /  2
)  <  ( abs `  X ) ) )
461, 45mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( ( R  +  ( abs `  X ) )  / 
2 )  <  ( abs `  X ) )
4743, 46eqbrtrd 4675 . . . . . . . 8  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( abs `  ( ( R  +  ( abs `  X ) )  /  2 ) )  <  ( abs `  X ) )
48 radcnvle.a . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  ( G `  X ) )  e. 
dom 
~~>  )
4948adantr 481 . . . . . . . 8  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  seq 0
(  +  ,  ( G `  X ) )  e.  dom  ~~>  )
503, 36, 37, 38, 47, 49radcnvlem3 24169 . . . . . . 7  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  seq 0
(  +  ,  ( G `  ( ( R  +  ( abs `  X ) )  / 
2 ) ) )  e.  dom  ~~>  )
51 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  ( ( R  +  ( abs `  X
) )  /  2
)  ->  ( G `  y )  =  ( G `  ( ( R  +  ( abs `  X ) )  / 
2 ) ) )
5251seqeq3d 12809 . . . . . . . . 9  |-  ( y  =  ( ( R  +  ( abs `  X
) )  /  2
)  ->  seq 0
(  +  ,  ( G `  y ) )  =  seq 0
(  +  ,  ( G `  ( ( R  +  ( abs `  X ) )  / 
2 ) ) ) )
5352eleq1d 2686 . . . . . . . 8  |-  ( y  =  ( ( R  +  ( abs `  X
) )  /  2
)  ->  (  seq 0 (  +  , 
( G `  y
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( G `  (
( R  +  ( abs `  X ) )  /  2 ) ) )  e.  dom  ~~>  ) )
54 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  y  ->  ( G `  r )  =  ( G `  y ) )
5554seqeq3d 12809 . . . . . . . . . 10  |-  ( r  =  y  ->  seq 0 (  +  , 
( G `  r
) )  =  seq 0 (  +  , 
( G `  y
) ) )
5655eleq1d 2686 . . . . . . . . 9  |-  ( r  =  y  ->  (  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( G `  y
) )  e.  dom  ~~>  ) )
5756cbvrabv 3199 . . . . . . . 8  |-  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  }  =  { y  e.  RR  |  seq 0
(  +  ,  ( G `  y ) )  e.  dom  ~~>  }
5853, 57elrab2 3366 . . . . . . 7  |-  ( ( ( R  +  ( abs `  X ) )  /  2 )  e.  { r  e.  RR  |  seq 0
(  +  ,  ( G `  r ) )  e.  dom  ~~>  }  <->  ( (
( R  +  ( abs `  X ) )  /  2 )  e.  RR  /\  seq 0 (  +  , 
( G `  (
( R  +  ( abs `  X ) )  /  2 ) ) )  e.  dom  ~~>  ) )
5935, 50, 58sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( ( R  +  ( abs `  X ) )  / 
2 )  e.  {
r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } )
60 supxrub 12154 . . . . . 6  |-  ( ( { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  }  C_  RR*  /\  (
( R  +  ( abs `  X ) )  /  2 )  e.  { r  e.  RR  |  seq 0
(  +  ,  ( G `  r ) )  e.  dom  ~~>  } )  ->  ( ( R  +  ( abs `  X
) )  /  2
)  <_  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  ) )
6133, 59, 60sylancr 695 . . . . 5  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( ( R  +  ( abs `  X ) )  / 
2 )  <_  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  ) )
6261, 5syl6breqr 4695 . . . 4  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( ( R  +  ( abs `  X ) )  / 
2 )  <_  R
)
6335, 28lenltd 10183 . . . 4  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  ( (
( R  +  ( abs `  X ) )  /  2 )  <_  R  <->  -.  R  <  ( ( R  +  ( abs `  X ) )  /  2 ) ) )
6462, 63mpbid 222 . . 3  |-  ( (
ph  /\  R  <  ( abs `  X ) )  ->  -.  R  <  ( ( R  +  ( abs `  X ) )  /  2 ) )
6531, 64pm2.65da 600 . 2  |-  ( ph  ->  -.  R  <  ( abs `  X ) )
66 xrlenlt 10103 . . 3  |-  ( ( ( abs `  X
)  e.  RR*  /\  R  e.  RR* )  ->  (
( abs `  X
)  <_  R  <->  -.  R  <  ( abs `  X
) ) )
6722, 7, 66syl2anc 693 . 2  |-  ( ph  ->  ( ( abs `  X
)  <_  R  <->  -.  R  <  ( abs `  X
) ) )
6865, 67mpbird 247 1  |-  ( ph  ->  ( abs `  X
)  <_  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   NN0cn0 11292   [,]cicc 12178    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  pserdvlem2  24182  abelthlem1  24185  logtayl  24406
  Copyright terms: Public domain W3C validator