MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylpf Structured version   Visualization version   Unicode version

Theorem taylpf 24120
Description: The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylpfval.f  |-  ( ph  ->  F : A --> CC )
taylpfval.a  |-  ( ph  ->  A  C_  S )
taylpfval.n  |-  ( ph  ->  N  e.  NN0 )
taylpfval.b  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
taylpfval.t  |-  T  =  ( N ( S Tayl 
F ) B )
Assertion
Ref Expression
taylpf  |-  ( ph  ->  T : CC --> CC )

Proof of Theorem taylpf
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
2 taylpfval.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
3 taylpfval.f . . . . 5  |-  ( ph  ->  F : A --> CC )
4 taylpfval.a . . . . 5  |-  ( ph  ->  A  C_  S )
5 taylpfval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
6 taylpfval.b . . . . 5  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
72, 3, 4, 5, 6taylplem2 24118 . . . 4  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) )  e.  CC )
81, 7fsumcl 14464 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) )  e.  CC )
9 eqid 2622 . . 3  |-  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )
108, 9fmptd 6385 . 2  |-  ( ph  ->  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) : CC --> CC )
11 taylpfval.t . . . 4  |-  T  =  ( N ( S Tayl 
F ) B )
122, 3, 4, 5, 6, 11taylpfval 24119 . . 3  |-  ( ph  ->  T  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )
1312feq1d 6030 . 2  |-  ( ph  ->  ( T : CC --> CC 
<->  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) : CC --> CC ) )
1410, 13mpbird 247 1  |-  ( ph  ->  T : CC --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {cpr 4179    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    - cmin 10266    / cdiv 10684   NN0cn0 11292   ...cfz 12326   ^cexp 12860   !cfa 13060   sum_csu 14416    Dncdvn 23628   Tayl ctayl 24107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631  df-dvn 23632  df-tayl 24109
This theorem is referenced by:  dvntaylp  24125  taylthlem1  24127
  Copyright terms: Public domain W3C validator