MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcnp Structured version   Visualization version   Unicode version

Theorem txmetcnp 22352
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
txmetcnp.4  |-  L  =  ( MetOpen `  E )
Assertion
Ref Expression
txmetcnp  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. A ,  B >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z
) ) ) )
Distinct variable groups:    v, u, w, z, F    u, J, v, w, z    u, K, v, w, z    u, X, v, w, z    u, Y, v, w, z    u, Z, v, w, z    u, A, v, w, z    u, C, v, w, z    u, D, v, w, z    u, B, v, w, z    u, E, v, w, z    w, L, z
Allowed substitution hints:    L( v, u)

Proof of Theorem txmetcnp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) )  =  (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) )
2 simpl1 1064 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  C  e.  ( *Met `  X
) )
3 simpl2 1065 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  D  e.  ( *Met `  Y
) )
41, 2, 3tmsxps 22341 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) )  e.  ( *Met `  ( X  X.  Y ) ) )
5 simpl3 1066 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  E  e.  ( *Met `  Z
) )
6 opelxpi 5148 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y )  -> 
<. A ,  B >.  e.  ( X  X.  Y
) )
76adantl 482 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  <. A ,  B >.  e.  ( X  X.  Y ) )
8 eqid 2622 . . . 4  |-  ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  =  ( MetOpen `  ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) ) )
9 txmetcnp.4 . . . 4  |-  L  =  ( MetOpen `  E )
108, 9metcnp 22346 . . 3  |-  ( ( ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) )  e.  ( *Met `  ( X  X.  Y
) )  /\  E  e.  ( *Met `  Z )  /\  <. A ,  B >.  e.  ( X  X.  Y ) )  ->  ( F  e.  ( ( ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  CnP  L ) `  <. A ,  B >. )  <-> 
( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. x  e.  ( X  X.  Y ) ( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  <  w  ->  ( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z ) ) ) )
114, 5, 7, 10syl3anc 1326 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  CnP  L ) `  <. A ,  B >. )  <-> 
( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. x  e.  ( X  X.  Y ) ( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  <  w  ->  ( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z ) ) ) )
12 metcn.2 . . . . . 6  |-  J  =  ( MetOpen `  C )
13 metcn.4 . . . . . 6  |-  K  =  ( MetOpen `  D )
141, 2, 3, 12, 13, 8tmsxpsmopn 22342 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  =  ( J  tX  K ) )
1514oveq1d 6665 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( ( MetOpen
`  ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) )  CnP  L )  =  ( ( J 
tX  K )  CnP 
L ) )
1615fveq1d 6193 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( (
( MetOpen `  ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) ) )  CnP 
L ) `  <. A ,  B >. )  =  ( ( ( J  tX  K )  CnP  L ) `  <. A ,  B >. ) )
1716eleq2d 2687 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  CnP  L ) `  <. A ,  B >. )  <-> 
F  e.  ( ( ( J  tX  K
)  CnP  L ) `  <. A ,  B >. ) ) )
18 oveq2 6658 . . . . . . . . 9  |-  ( x  =  <. u ,  v
>.  ->  ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  =  (
<. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
) )
1918breq1d 4663 . . . . . . . 8  |-  ( x  =  <. u ,  v
>.  ->  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  <->  ( <. A ,  B >. ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) ) <. u ,  v >. )  <  w ) )
20 df-ov 6653 . . . . . . . . . . 11  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2120oveq1i 6660 . . . . . . . . . 10  |-  ( ( A F B ) E ( F `  x ) )  =  ( ( F `  <. A ,  B >. ) E ( F `  x ) )
22 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  ( F `  x )  =  ( F `  <. u ,  v >. )
)
23 df-ov 6653 . . . . . . . . . . . 12  |-  ( u F v )  =  ( F `  <. u ,  v >. )
2422, 23syl6eqr 2674 . . . . . . . . . . 11  |-  ( x  =  <. u ,  v
>.  ->  ( F `  x )  =  ( u F v ) )
2524oveq2d 6666 . . . . . . . . . 10  |-  ( x  =  <. u ,  v
>.  ->  ( ( A F B ) E ( F `  x
) )  =  ( ( A F B ) E ( u F v ) ) )
2621, 25syl5eqr 2670 . . . . . . . . 9  |-  ( x  =  <. u ,  v
>.  ->  ( ( F `
 <. A ,  B >. ) E ( F `
 x ) )  =  ( ( A F B ) E ( u F v ) ) )
2726breq1d 4663 . . . . . . . 8  |-  ( x  =  <. u ,  v
>.  ->  ( ( ( F `  <. A ,  B >. ) E ( F `  x ) )  <  z  <->  ( ( A F B ) E ( u F v ) )  <  z
) )
2819, 27imbi12d 334 . . . . . . 7  |-  ( x  =  <. u ,  v
>.  ->  ( ( (
<. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z ) ) )
2928ralxp 5263 . . . . . 6  |-  ( A. x  e.  ( X  X.  Y ) ( (
<. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  A. u  e.  X  A. v  e.  Y  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z ) )
302ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  C  e.  ( *Met `  X
) )
313ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  D  e.  ( *Met `  Y
) )
32 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  ( A  e.  X  /\  B  e.  Y ) )
3332simpld 475 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  A  e.  X
)
3432simprd 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  B  e.  Y
)
35 simprrl 804 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  u  e.  X
)
36 simprrr 805 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  v  e.  Y
)
371, 30, 31, 33, 34, 35, 36tmsxpsval2 22344 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) )
<. u ,  v >.
)  =  if ( ( A C u )  <_  ( B D v ) ,  ( B D v ) ,  ( A C u ) ) )
3837breq1d 4663 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  <->  if (
( A C u )  <_  ( B D v ) ,  ( B D v ) ,  ( A C u ) )  <  w ) )
39 xmetcl 22136 . . . . . . . . . . . 12  |-  ( ( C  e.  ( *Met `  X )  /\  A  e.  X  /\  u  e.  X
)  ->  ( A C u )  e. 
RR* )
4030, 33, 35, 39syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  ( A C u )  e.  RR* )
41 xmetcl 22136 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  Y )  /\  B  e.  Y  /\  v  e.  Y
)  ->  ( B D v )  e. 
RR* )
4231, 34, 36, 41syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  ( B D v )  e.  RR* )
43 rpxr 11840 . . . . . . . . . . . 12  |-  ( w  e.  RR+  ->  w  e. 
RR* )
4443ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  w  e.  RR* )
45 xrmaxlt 12012 . . . . . . . . . . 11  |-  ( ( ( A C u )  e.  RR*  /\  ( B D v )  e. 
RR*  /\  w  e.  RR* )  ->  ( if ( ( A C u )  <_  ( B D v ) ,  ( B D v ) ,  ( A C u ) )  <  w  <->  ( ( A C u )  < 
w  /\  ( B D v )  < 
w ) ) )
4640, 42, 44, 45syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  ( if ( ( A C u )  <_  ( B D v ) ,  ( B D v ) ,  ( A C u ) )  <  w  <->  ( ( A C u )  < 
w  /\  ( B D v )  < 
w ) ) )
4738, 46bitrd 268 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  <->  ( ( A C u )  < 
w  /\  ( B D v )  < 
w ) ) )
4847imbi1d 331 . . . . . . . 8  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( w  e.  RR+  /\  ( u  e.  X  /\  v  e.  Y ) ) )  ->  ( ( (
<. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z )  <->  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
4948anassrs 680 . . . . . . 7  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  w  e.  RR+ )  /\  ( u  e.  X  /\  v  e.  Y
) )  ->  (
( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) )
<. u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z )  <->  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
50492ralbidva 2988 . . . . . 6  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  w  e.  RR+ )  ->  ( A. u  e.  X  A. v  e.  Y  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z )  <->  A. u  e.  X  A. v  e.  Y  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
5129, 50syl5bb 272 . . . . 5  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  /\  w  e.  RR+ )  ->  ( A. x  e.  ( X  X.  Y
) ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  A. u  e.  X  A. v  e.  Y  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
5251rexbidva 3049 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  ->  ( E. w  e.  RR+  A. x  e.  ( X  X.  Y
) ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
5352ralbidv 2986 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  F : ( X  X.  Y ) --> Z )  ->  ( A. z  e.  RR+  E. w  e.  RR+  A. x  e.  ( X  X.  Y ) ( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  <  w  ->  ( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  < 
w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
5453pm5.32da 673 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. x  e.  ( X  X.  Y
) ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z ) )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) ) )
5511, 17, 543bitr3d 298 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. A ,  B >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ifcif 4086   <.cop 4183   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832   distcds 15950    X.s cxps 16166   *Metcxmt 19731   MetOpencmopn 19736    CnP ccnp 21029    tX ctx 21363  toMetSpctmt 22124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-tms 22127
This theorem is referenced by:  txmetcn  22353  cxpcn3  24489
  Copyright terms: Public domain W3C validator