MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0re Structured version   Visualization version   Unicode version

Theorem dchrisum0re 25202
Description: Suppose  X is a non-principal Dirichlet character with  sum_ n  e.  NN ,  X ( n )  /  n  =  0. Then  X is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
Assertion
Ref Expression
dchrisum0re  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
Distinct variable groups:    y, m,  .1.    m, N, y    ph, m    m, Z, y    D, m, y    m, L, y   
m, X, y
Allowed substitution hints:    ph( y)    G( y, m)    W( y, m)

Proof of Theorem dchrisum0re
Dummy variables  k  n  x  f  c 
t  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum2.g . . . 4  |-  G  =  (DChr `  N )
2 rpvmasum.z . . . 4  |-  Z  =  (ℤ/n `  N )
3 rpvmasum2.d . . . 4  |-  D  =  ( Base `  G
)
4 eqid 2622 . . . 4  |-  ( Base `  Z )  =  (
Base `  Z )
5 rpvmasum2.w . . . . . . 7  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
6 ssrab2 3687 . . . . . . 7  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
75, 6eqsstri 3635 . . . . . 6  |-  W  C_  ( D  \  {  .1.  } )
8 dchrisum0.b . . . . . 6  |-  ( ph  ->  X  e.  W )
97, 8sseldi 3601 . . . . 5  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
109eldifad 3586 . . . 4  |-  ( ph  ->  X  e.  D )
111, 2, 3, 4, 10dchrf 24967 . . 3  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
1211ffnd 6046 . 2  |-  ( ph  ->  X  Fn  ( Base `  Z ) )
1311ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( X `  x )  e.  CC )
14 fvco3 6275 . . . . . 6  |-  ( ( X : ( Base `  Z ) --> CC  /\  x  e.  ( Base `  Z ) )  -> 
( ( *  o.  X ) `  x
)  =  ( * `
 ( X `  x ) ) )
1511, 14sylan 488 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( (
*  o.  X ) `
 x )  =  ( * `  ( X `  x )
) )
16 logno1 24382 . . . . . . . 8  |-  -.  (
x  e.  RR+  |->  ( log `  x ) )  e.  O(1)
17 1red 10055 . . . . . . . . . . 11  |-  ( (
ph  /\  ( *  o.  X )  =/=  X
)  ->  1  e.  RR )
18 rpvmasum.l . . . . . . . . . . . . 13  |-  L  =  ( ZRHom `  Z
)
19 rpvmasum.a . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
20 rpvmasum2.1 . . . . . . . . . . . . 13  |-  .1.  =  ( 0g `  G )
21 eqid 2622 . . . . . . . . . . . . 13  |-  (Unit `  Z )  =  (Unit `  Z )
2219nnnn0d 11351 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
232zncrng 19893 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
2422, 23syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Z  e.  CRing )
25 crngring 18558 . . . . . . . . . . . . . . 15  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
2624, 25syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  Z  e.  Ring )
27 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
2821, 271unit 18658 . . . . . . . . . . . . . 14  |-  ( Z  e.  Ring  ->  ( 1r
`  Z )  e.  (Unit `  Z )
)
2926, 28syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1r `  Z
)  e.  (Unit `  Z ) )
30 eqid 2622 . . . . . . . . . . . . 13  |-  ( `' L " { ( 1r `  Z ) } )  =  ( `' L " { ( 1r `  Z ) } )
31 eqidd 2623 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  W )  ->  ( 1r `  Z )  =  ( 1r `  Z
) )
322, 18, 19, 1, 3, 20, 5, 21, 29, 30, 31rpvmasum2 25201 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) )  e.  O(1) )
3332adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( *  o.  X )  =/=  X
)  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) )  e.  O(1) )
3419phicld 15477 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( phi `  N
)  e.  NN )
3534nnnn0d 11351 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( phi `  N
)  e.  NN0 )
3635adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( phi `  N )  e.  NN0 )
3736nn0red 11352 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( phi `  N )  e.  RR )
38 fzfid 12772 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
39 inss1 3833 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  C_  ( 1 ... ( |_ `  x ) )
40 ssfi 8180 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  C_  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  e.  Fin )
4138, 39, 40sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  e.  Fin )
42 elinel1 3799 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
43 elfznn 12370 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
4443adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
4542, 44sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  n  e.  NN )
46 vmacl 24844 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
47 nndivre 11056 . . . . . . . . . . . . . . . . . 18  |-  ( ( (Λ `  n )  e.  RR  /\  n  e.  NN )  ->  (
(Λ `  n )  /  n )  e.  RR )
4846, 47mpancom 703 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
(Λ `  n )  /  n )  e.  RR )
4945, 48syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  ( (Λ `  n
)  /  n )  e.  RR )
5041, 49fsumrecl 14465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n )  e.  RR )
5137, 50remulcld 10070 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( phi `  N )  x. 
sum_ n  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  e.  RR )
52 relogcl 24322 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
5352adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
54 1re 10039 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
551, 3dchrfi 24980 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  D  e.  Fin )
5619, 55syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  D  e.  Fin )
57 difss 3737 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D 
\  {  .1.  }
)  C_  D
587, 57sstri 3612 . . . . . . . . . . . . . . . . . . . 20  |-  W  C_  D
59 ssfi 8180 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  Fin  /\  W  C_  D )  ->  W  e.  Fin )
6056, 58, 59sylancl 694 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  W  e.  Fin )
61 hashcl 13147 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e.  Fin  ->  ( # `
 W )  e. 
NN0 )
6260, 61syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  W
)  e.  NN0 )
6362nn0red 11352 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( # `  W
)  e.  RR )
64 resubcl 10345 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR  /\  ( # `  W )  e.  RR )  -> 
( 1  -  ( # `
 W ) )  e.  RR )
6554, 63, 64sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  -  ( # `
 W ) )  e.  RR )
6665adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  -  ( # `  W
) )  e.  RR )
6753, 66remulcld 10070 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  x.  ( 1  -  ( # `
 W ) ) )  e.  RR )
6851, 67resubcld 10458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) )  e.  RR )
6968recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) )  e.  CC )
7069adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  x  e.  RR+ )  -> 
( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  e.  CC )
7152adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  x  e.  RR+ )  -> 
( log `  x
)  e.  RR )
7271recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  x  e.  RR+ )  -> 
( log `  x
)  e.  CC )
7352ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  e.  RR )
7467ad2ant2r 783 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) )  e.  RR )
7573, 74readdcld 10069 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  e.  RR )
76 0red 10041 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  e.  RR )
7751ad2ant2r 783 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  e.  RR )
78 2re 11090 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
7978a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
2  e.  RR )
8063ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  W )  e.  RR )
8179, 80resubcld 10458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 2  -  ( # `
 W ) )  e.  RR )
82 log1 24332 . . . . . . . . . . . . . . . . 17  |-  ( log `  1 )  =  0
83 simprr 796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
84 1rp 11836 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR+
85 simprl 794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
86 logleb 24349 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR+  /\  x  e.  RR+ )  ->  (
1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
8784, 85, 86sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( log `  1 )  <_  ( log `  x
) ) )
8883, 87mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  1
)  <_  ( log `  x ) )
8982, 88syl5eqbrr 4689 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( log `  x ) )
90 simplr 792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( *  o.  X
)  =/=  X )
91 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( invg `  G )  =  ( invg `  G )
921, 3, 10, 91dchrinv 24986 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( invg `  G ) `  X
)  =  ( *  o.  X ) )
931dchrabl 24979 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  G  e.  Abel )
9419, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  G  e.  Abel )
95 ablgrp 18198 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( G  e.  Abel  ->  G  e. 
Grp )
9694, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  G  e.  Grp )
973, 91grpinvcl 17467 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( G  e.  Grp  /\  X  e.  D )  ->  ( ( invg `  G ) `  X
)  e.  D )
9896, 10, 97syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( invg `  G ) `  X
)  e.  D )
9992, 98eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( *  o.  X
)  e.  D )
100 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
1019, 100syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  X  =/=  .1.  )
1023, 20grpidcl 17450 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( G  e.  Grp  ->  .1.  e.  D )
10396, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  .1.  e.  D )
1043, 91, 96, 10, 103grpinv11 17484 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( ( invg `  G ) `
 X )  =  ( ( invg `  G ) `  .1.  ) 
<->  X  =  .1.  )
)
105104necon3bid 2838 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( ( invg `  G ) `
 X )  =/=  ( ( invg `  G ) `  .1.  ) 
<->  X  =/=  .1.  )
)
106101, 105mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( invg `  G ) `  X
)  =/=  ( ( invg `  G
) `  .1.  )
)
10720, 91grpinvid 17476 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .1.  )  =  .1.  )
10896, 107syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( invg `  G ) `  .1.  )  =  .1.  )
109106, 92, 1083netr3d 2870 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( *  o.  X
)  =/=  .1.  )
110 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( *  o.  X )  e.  ( D  \  {  .1.  } )  <->  ( (
*  o.  X )  e.  D  /\  (
*  o.  X )  =/=  .1.  ) )
11199, 109, 110sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( *  o.  X
)  e.  ( D 
\  {  .1.  }
) )
112 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . . 23  |-  NN  =  ( ZZ>= `  1 )
113 1zzd 11408 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  1  e.  ZZ )
114 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  m  ->  ( L `  n )  =  ( L `  m ) )
115114fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  m  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  m )
) )
116 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  m  ->  n  =  m )
117115, 116oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  m  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L `  m ) )  /  m ) )
118117fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  m  ->  (
* `  ( ( X `  ( L `  n ) )  /  n ) )  =  ( * `  (
( X `  ( L `  m )
)  /  m ) ) )
119 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  e.  NN  |->  ( * `
 ( ( X `
 ( L `  n ) )  /  n ) ) )  =  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `  n ) )  /  n ) ) )
120 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) )  e. 
_V
121118, 119, 120fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( * `  (
( X `  ( L `  n )
)  /  n ) ) ) `  m
)  =  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) ) )
122121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( * `  ( ( X `  ( L `
 n ) )  /  n ) ) ) `  m )  =  ( * `  ( ( X `  ( L `  m ) )  /  m ) ) )
123 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  NN  ->  m  e.  RR )
124123adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR )
125124cjred 13966 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 m )  =  m )
126125oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( * `  ( X `
 ( L `  m ) ) )  /  ( * `  m ) )  =  ( ( * `  ( X `  ( L `
 m ) ) )  /  m ) )
12711adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN )  ->  X :
( Base `  Z ) --> CC )
1282, 4, 18znzrhfo 19896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
12922, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Z ) )
130 fof 6115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
131129, 130syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
132 nnz 11399 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  NN  ->  m  e.  ZZ )
133 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( L : ZZ --> ( Base `  Z )  /\  m  e.  ZZ )  ->  ( L `  m )  e.  ( Base `  Z
) )
134131, 132, 133syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN )  ->  ( L `
 m )  e.  ( Base `  Z
) )
135127, 134ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
136 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN  ->  m  e.  CC )
137136adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
138 nnne0 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN  ->  m  =/=  0 )
139138adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
140135, 137, 139cjdivd 13963 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( * `  ( X `  ( L `
 m ) ) )  /  ( * `
 m ) ) )
141 fvco3 6275 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( X : ( Base `  Z ) --> CC  /\  ( L `  m )  e.  ( Base `  Z
) )  ->  (
( *  o.  X
) `  ( L `  m ) )  =  ( * `  ( X `  ( L `  m ) ) ) )
142127, 134, 141syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( *  o.  X ) `
 ( L `  m ) )  =  ( * `  ( X `  ( L `  m ) ) ) )
143142oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( *  o.  X
) `  ( L `  m ) )  /  m )  =  ( ( * `  ( X `  ( L `  m ) ) )  /  m ) )
144126, 140, 1433eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( *  o.  X ) `  ( L `  m ) )  /  m ) )
145122, 144eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( * `  ( ( X `  ( L `
 n ) )  /  n ) ) ) `  m )  =  ( ( ( *  o.  X ) `
 ( L `  m ) )  /  m ) )
146135cjcld 13936 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 ( X `  ( L `  m ) ) )  e.  CC )
147146, 137, 139divcld 10801 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( * `  ( X `
 ( L `  m ) ) )  /  m )  e.  CC )
148143, 147eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( *  o.  X
) `  ( L `  m ) )  /  m )  e.  CC )
149 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
1502, 18, 19, 1, 3, 20, 10, 101, 149dchrmusumlema 25182 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) )
151 simprrl 804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t )
1528adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  e.  W
)
15319adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  N  e.  NN )
15410adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  e.  D
)
155101adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  =/=  .1.  )
156 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  c  e.  ( 0 [,) +oo )
)
157 simprrr 805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )
1582, 18, 153, 1, 3, 20, 154, 155, 149, 156, 151, 157, 5dchrvmaeq0 25193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  ( X  e.  W  <->  t  =  0 ) )
159152, 158mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  t  =  0 )
160151, 159breqtrd 4679 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  0 )
161160rexlimdvaa 3032 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  seq 1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  0 ) )
162161exlimdv 1861 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,) +oo ) (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  seq 1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  0 ) )
163150, 162mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  0 )
164 seqex 12803 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `
 n ) )  /  n ) ) ) )  e.  _V
165164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `  n ) )  /  n ) ) ) )  e. 
_V )
166 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
167166fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
168 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  m  ->  a  =  m )
169167, 168oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
170 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( X `  ( L `
 m ) )  /  m )  e. 
_V
171169, 149, 170fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( m  e.  NN  ->  (
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
172171adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
173135, 137, 139divcld 10801 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  m )  e.  CC )
174172, 173eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) `  m )  e.  CC )
175112, 113, 174serf 12829 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) : NN --> CC )
176175ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) ) `  k
)  e.  CC )
177 fzfid 12772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1 ... k )  e. 
Fin )
178 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  k  e.  NN )  ->  ph )
179 elfznn 12370 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  ( 1 ... k )  ->  m  e.  NN )
180178, 179, 173syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( X `  ( L `  m )
)  /  m )  e.  CC )
181177, 180fsumcj 14542 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  NN )  ->  ( * `
 sum_ m  e.  ( 1 ... k ) ( ( X `  ( L `  m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... k
) ( * `  ( ( X `  ( L `  m ) )  /  m ) ) )
182178, 179, 172syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
183 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
184183, 112syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
185182, 184, 180fsumser 14461 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( ( X `
 ( L `  m ) )  /  m )  =  (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 k ) )
186185fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  NN )  ->  ( * `
 sum_ m  e.  ( 1 ... k ) ( ( X `  ( L `  m ) )  /  m ) )  =  ( * `
 (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  k
) ) )
187178, 179, 122syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( n  e.  NN  |->  ( * `  (
( X `  ( L `  n )
)  /  n ) ) ) `  m
)  =  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) ) )
188173cjcld 13936 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) )  e.  CC )
189178, 179, 188syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
* `  ( ( X `  ( L `  m ) )  /  m ) )  e.  CC )
190187, 184, 189fsumser 14461 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( * `  ( ( X `  ( L `  m ) )  /  m ) )  =  (  seq 1 (  +  , 
( n  e.  NN  |->  ( * `  (
( X `  ( L `  n )
)  /  n ) ) ) ) `  k ) )
191181, 186, 1903eqtr3rd 2665 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  , 
( n  e.  NN  |->  ( * `  (
( X `  ( L `  n )
)  /  n ) ) ) ) `  k )  =  ( * `  (  seq 1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) ) `  k
) ) )
192112, 163, 165, 113, 176, 191climcj 14335 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `  n ) )  /  n ) ) ) )  ~~>  ( * `
 0 ) )
193 cj0 13898 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( * `
 0 )  =  0
194192, 193syl6breq 4694 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `  n ) )  /  n ) ) ) )  ~~>  0 )
195112, 113, 145, 148, 194isumclim 14488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  -> 
sum_ m  e.  NN  ( ( ( *  o.  X ) `  ( L `  m ) )  /  m )  =  0 )
196 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  ( *  o.  X )  ->  (
y `  ( L `  m ) )  =  ( ( *  o.  X ) `  ( L `  m )
) )
197196oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  =  ( *  o.  X )  ->  (
( y `  ( L `  m )
)  /  m )  =  ( ( ( *  o.  X ) `
 ( L `  m ) )  /  m ) )
198197sumeq2sdv 14435 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  ( *  o.  X )  ->  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  sum_ m  e.  NN  ( ( ( *  o.  X
) `  ( L `  m ) )  /  m ) )
199198eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  ( *  o.  X )  ->  ( sum_ m  e.  NN  (
( y `  ( L `  m )
)  /  m )  =  0  <->  sum_ m  e.  NN  ( ( ( *  o.  X ) `
 ( L `  m ) )  /  m )  =  0 ) )
200199, 5elrab2 3366 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( *  o.  X )  e.  W  <->  ( (
*  o.  X )  e.  ( D  \  {  .1.  } )  /\  sum_
m  e.  NN  (
( ( *  o.  X ) `  ( L `  m )
)  /  m )  =  0 ) )
201111, 195, 200sylanbrc 698 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( *  o.  X
)  e.  W )
202201ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( *  o.  X
)  e.  W )
2038ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  X  e.  W )
204 hashprg 13182 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( *  o.  X
)  e.  W  /\  X  e.  W )  ->  ( ( *  o.  X )  =/=  X  <->  (
# `  { (
*  o.  X ) ,  X } )  =  2 ) )
205202, 203, 204syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( *  o.  X )  =/=  X  <->  (
# `  { (
*  o.  X ) ,  X } )  =  2 ) )
20690, 205mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  { ( *  o.  X ) ,  X } )  =  2 )
20760ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  W  e.  Fin )
208202, 203prssd 4354 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  { ( *  o.  X ) ,  X }  C_  W )
209 ssdomg 8001 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  e.  Fin  ->  ( { ( *  o.  X ) ,  X }  C_  W  ->  { ( *  o.  X ) ,  X }  ~<_  W ) )
210207, 208, 209sylc 65 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  { ( *  o.  X ) ,  X }  ~<_  W )
211 hashdomi 13169 . . . . . . . . . . . . . . . . . . 19  |-  ( { ( *  o.  X
) ,  X }  ~<_  W  ->  ( # `  {
( *  o.  X
) ,  X }
)  <_  ( # `  W
) )
212210, 211syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  { ( *  o.  X ) ,  X } )  <_  ( # `  W
) )
213206, 212eqbrtrrd 4677 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
2  <_  ( # `  W
) )
214 suble0 10542 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  RR  /\  ( # `  W )  e.  RR )  -> 
( ( 2  -  ( # `  W
) )  <_  0  <->  2  <_  ( # `  W
) ) )
21578, 80, 214sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( 2  -  ( # `  W
) )  <_  0  <->  2  <_  ( # `  W
) ) )
216213, 215mpbird 247 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 2  -  ( # `
 W ) )  <_  0 )
21781, 76, 73, 89, 216lemul2ad 10964 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 2  -  ( # `  W
) ) )  <_ 
( ( log `  x
)  x.  0 ) )
218 df-2 11079 . . . . . . . . . . . . . . . . . . 19  |-  2  =  ( 1  +  1 )
219218oveq1i 6660 . . . . . . . . . . . . . . . . . 18  |-  ( 2  -  ( # `  W
) )  =  ( ( 1  +  1 )  -  ( # `  W ) )
220 1cnd 10056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  CC )
22180recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  W )  e.  CC )
222220, 220, 221addsubassd 10412 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( 1  +  1 )  -  ( # `
 W ) )  =  ( 1  +  ( 1  -  ( # `
 W ) ) ) )
223219, 222syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 2  -  ( # `
 W ) )  =  ( 1  +  ( 1  -  ( # `
 W ) ) ) )
224223oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 2  -  ( # `  W
) ) )  =  ( ( log `  x
)  x.  ( 1  +  ( 1  -  ( # `  W
) ) ) ) )
22572adantrr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  e.  CC )
22665ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( # `
 W ) )  e.  RR )
227226recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( # `
 W ) )  e.  CC )
228225, 220, 227adddid 10064 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 1  +  ( 1  -  ( # `  W
) ) ) )  =  ( ( ( log `  x )  x.  1 )  +  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
229225mulid1d 10057 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  1 )  =  ( log `  x
) )
230229oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( log `  x )  x.  1 )  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  =  ( ( log `  x )  +  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
231224, 228, 2303eqtrd 2660 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 2  -  ( # `  W
) ) )  =  ( ( log `  x
)  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) )
232225mul01d 10235 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  0 )  =  0 )
233217, 231, 2323brtr3d 4684 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  <_  0 )
23434nnred 11035 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( phi `  N
)  e.  RR )
235234ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( phi `  N
)  e.  RR )
23650ad2ant2r 783 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( ( 1 ... ( |_
`  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n )  e.  RR )
23735ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( phi `  N
)  e.  NN0 )
238237nn0ge0d 11354 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( phi `  N ) )
23945, 46syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  (Λ `  n )  e.  RR )
240 vmage0 24847 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
24145, 240syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  0  <_  (Λ `  n ) )
24245nnred 11035 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  n  e.  RR )
24345nngt0d 11064 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  0  <  n
)
244 divge0 10892 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (Λ `  n
)  e.  RR  /\  0  <_  (Λ `  n )
)  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
0  <_  ( (Λ `  n )  /  n
) )
245239, 241, 242, 243, 244syl22anc 1327 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  0  <_  (
(Λ `  n )  /  n ) )
24641, 49, 245fsumge0 14527 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  sum_
n  e.  ( ( 1 ... ( |_
`  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )
247246ad2ant2r 783 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )
248235, 236, 238, 247mulge0d 10604 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( phi `  N )  x. 
sum_ n  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) ) )
24975, 76, 77, 233, 248letrd 10194 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  <_  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) ) )
250 leaddsub 10504 . . . . . . . . . . . . . 14  |-  ( ( ( log `  x
)  e.  RR  /\  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) )  e.  RR  /\  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  e.  RR )  ->  ( ( ( log `  x )  +  ( ( log `  x )  x.  (
1  -  ( # `  W ) ) ) )  <_  ( ( phi `  N )  x. 
sum_ n  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  <->  ( log `  x
)  <_  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) ) )
25173, 74, 77, 250syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( log `  x )  +  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) )  <_  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  <->  ( log `  x
)  <_  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) ) )
252249, 251mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  <_  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
25373, 89absidd 14161 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( log `  x ) )  =  ( log `  x
) )
25468ad2ant2r 783 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  e.  RR )
25576, 73, 254, 89, 252letrd 10194 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
256254, 255absidd 14161 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) )  =  ( ( ( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
257252, 253, 2563brtr4d 4685 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( log `  x ) )  <_  ( abs `  (
( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) ) )
25817, 33, 70, 72, 257o1le 14383 . . . . . . . . . 10  |-  ( (
ph  /\  ( *  o.  X )  =/=  X
)  ->  ( x  e.  RR+  |->  ( log `  x
) )  e.  O(1) )
259258ex 450 . . . . . . . . 9  |-  ( ph  ->  ( ( *  o.  X )  =/=  X  ->  ( x  e.  RR+  |->  ( log `  x ) )  e.  O(1) ) )
260259necon1bd 2812 . . . . . . . 8  |-  ( ph  ->  ( -.  ( x  e.  RR+  |->  ( log `  x ) )  e.  O(1)  ->  ( *  o.  X )  =  X ) )
26116, 260mpi 20 . . . . . . 7  |-  ( ph  ->  ( *  o.  X
)  =  X )
262261adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( *  o.  X )  =  X )
263262fveq1d 6193 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( (
*  o.  X ) `
 x )  =  ( X `  x
) )
26415, 263eqtr3d 2658 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( * `  ( X `  x
) )  =  ( X `  x ) )
26513, 264cjrebd 13942 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( X `  x )  e.  RR )
266265ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  (
Base `  Z )
( X `  x
)  e.  RR )
267 ffnfv 6388 . 2  |-  ( X : ( Base `  Z
) --> RR  <->  ( X  Fn  ( Base `  Z
)  /\  A. x  e.  ( Base `  Z
) ( X `  x )  e.  RR ) )
26812, 266, 267sylanbrc 698 1  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    ~<_ cdom 7953   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   [,)cico 12177   ...cfz 12326   |_cfl 12591    seqcseq 12801   #chash 13117   *ccj 13836   abscabs 13974    ~~> cli 14215   O(1)co1 14217   sum_csu 14416   phicphi 15469   Basecbs 15857   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   Abelcabl 18194   1rcur 18501   Ringcrg 18547   CRingccrg 18548  Unitcui 18639   ZRHomczrh 19848  ℤ/nczn 19851   logclog 24301  Λcvma 24818  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394  df-dpj 18395  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827  df-dchr 24958
This theorem is referenced by:  dchrisum0  25209
  Copyright terms: Public domain W3C validator