MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum2 Structured version   Visualization version   Unicode version

Theorem dchrsum2 24993
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character  X is  0 if  X is non-principal and  phi ( n ) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g  |-  G  =  (DChr `  N )
dchrsum.z  |-  Z  =  (ℤ/n `  N )
dchrsum.d  |-  D  =  ( Base `  G
)
dchrsum.1  |-  .1.  =  ( 0g `  G )
dchrsum.x  |-  ( ph  ->  X  e.  D )
dchrsum2.u  |-  U  =  (Unit `  Z )
Assertion
Ref Expression
dchrsum2  |-  ( ph  -> 
sum_ a  e.  U  ( X `  a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
Distinct variable groups:    .1. , a    ph, a    U, a    X, a    Z, a
Allowed substitution hints:    D( a)    G( a)    N( a)

Proof of Theorem dchrsum2
Dummy variables  k  x  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2633 . 2  |-  ( ( phi `  N )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 )  -> 
( sum_ a  e.  U  ( X `  a )  =  ( phi `  N )  <->  sum_ a  e.  U  ( X `  a )  =  if ( X  =  .1. 
,  ( phi `  N ) ,  0 ) ) )
2 eqeq2 2633 . 2  |-  ( 0  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 )  -> 
( sum_ a  e.  U  ( X `  a )  =  0  <->  sum_ a  e.  U  ( X `  a )  =  if ( X  =  .1. 
,  ( phi `  N ) ,  0 ) ) )
3 fveq1 6190 . . . . . 6  |-  ( X  =  .1.  ->  ( X `  a )  =  (  .1.  `  a
) )
4 dchrsum.g . . . . . . 7  |-  G  =  (DChr `  N )
5 dchrsum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
6 dchrsum.1 . . . . . . 7  |-  .1.  =  ( 0g `  G )
7 dchrsum2.u . . . . . . 7  |-  U  =  (Unit `  Z )
8 dchrsum.x . . . . . . . . 9  |-  ( ph  ->  X  e.  D )
9 dchrsum.d . . . . . . . . . 10  |-  D  =  ( Base `  G
)
104, 9dchrrcl 24965 . . . . . . . . 9  |-  ( X  e.  D  ->  N  e.  NN )
118, 10syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
1211adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  U )  ->  N  e.  NN )
13 simpr 477 . . . . . . 7  |-  ( (
ph  /\  a  e.  U )  ->  a  e.  U )
144, 5, 6, 7, 12, 13dchr1 24982 . . . . . 6  |-  ( (
ph  /\  a  e.  U )  ->  (  .1.  `  a )  =  1 )
153, 14sylan9eqr 2678 . . . . 5  |-  ( ( ( ph  /\  a  e.  U )  /\  X  =  .1.  )  ->  ( X `  a )  =  1 )
1615an32s 846 . . . 4  |-  ( ( ( ph  /\  X  =  .1.  )  /\  a  e.  U )  ->  ( X `  a )  =  1 )
1716sumeq2dv 14433 . . 3  |-  ( (
ph  /\  X  =  .1.  )  ->  sum_ a  e.  U  ( X `  a )  =  sum_ a  e.  U  1
)
185, 7znunithash 19913 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( # `
 U )  =  ( phi `  N
) )
1911, 18syl 17 . . . . . . . 8  |-  ( ph  ->  ( # `  U
)  =  ( phi `  N ) )
2011phicld 15477 . . . . . . . . 9  |-  ( ph  ->  ( phi `  N
)  e.  NN )
2120nnnn0d 11351 . . . . . . . 8  |-  ( ph  ->  ( phi `  N
)  e.  NN0 )
2219, 21eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  ( # `  U
)  e.  NN0 )
23 fvex 6201 . . . . . . . . 9  |-  (Unit `  Z )  e.  _V
247, 23eqeltri 2697 . . . . . . . 8  |-  U  e. 
_V
25 hashclb 13149 . . . . . . . 8  |-  ( U  e.  _V  ->  ( U  e.  Fin  <->  ( # `  U
)  e.  NN0 )
)
2624, 25ax-mp 5 . . . . . . 7  |-  ( U  e.  Fin  <->  ( # `  U
)  e.  NN0 )
2722, 26sylibr 224 . . . . . 6  |-  ( ph  ->  U  e.  Fin )
28 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
29 fsumconst 14522 . . . . . 6  |-  ( ( U  e.  Fin  /\  1  e.  CC )  -> 
sum_ a  e.  U 
1  =  ( (
# `  U )  x.  1 ) )
3027, 28, 29sylancl 694 . . . . 5  |-  ( ph  -> 
sum_ a  e.  U 
1  =  ( (
# `  U )  x.  1 ) )
3119oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( # `  U
)  x.  1 )  =  ( ( phi `  N )  x.  1 ) )
3220nncnd 11036 . . . . . 6  |-  ( ph  ->  ( phi `  N
)  e.  CC )
3332mulid1d 10057 . . . . 5  |-  ( ph  ->  ( ( phi `  N )  x.  1 )  =  ( phi `  N ) )
3430, 31, 333eqtrd 2660 . . . 4  |-  ( ph  -> 
sum_ a  e.  U 
1  =  ( phi `  N ) )
3534adantr 481 . . 3  |-  ( (
ph  /\  X  =  .1.  )  ->  sum_ a  e.  U  1  =  ( phi `  N ) )
3617, 35eqtrd 2656 . 2  |-  ( (
ph  /\  X  =  .1.  )  ->  sum_ a  e.  U  ( X `  a )  =  ( phi `  N ) )
374dchrabl 24979 . . . . . . . 8  |-  ( N  e.  NN  ->  G  e.  Abel )
38 ablgrp 18198 . . . . . . . 8  |-  ( G  e.  Abel  ->  G  e. 
Grp )
399, 6grpidcl 17450 . . . . . . . 8  |-  ( G  e.  Grp  ->  .1.  e.  D )
4011, 37, 38, 394syl 19 . . . . . . 7  |-  ( ph  ->  .1.  e.  D )
414, 5, 9, 7, 8, 40dchreq 24983 . . . . . 6  |-  ( ph  ->  ( X  =  .1.  <->  A. k  e.  U  ( X `  k )  =  (  .1.  `  k ) ) )
4241notbid 308 . . . . 5  |-  ( ph  ->  ( -.  X  =  .1.  <->  -.  A. k  e.  U  ( X `  k )  =  (  .1.  `  k )
) )
43 rexnal 2995 . . . . 5  |-  ( E. k  e.  U  -.  ( X `  k )  =  (  .1.  `  k )  <->  -.  A. k  e.  U  ( X `  k )  =  (  .1.  `  k )
)
4442, 43syl6bbr 278 . . . 4  |-  ( ph  ->  ( -.  X  =  .1.  <->  E. k  e.  U  -.  ( X `  k
)  =  (  .1.  `  k ) ) )
45 df-ne 2795 . . . . . 6  |-  ( ( X `  k )  =/=  (  .1.  `  k )  <->  -.  ( X `  k )  =  (  .1.  `  k
) )
4611adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  U )  ->  N  e.  NN )
47 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  U )  ->  k  e.  U )
484, 5, 6, 7, 46, 47dchr1 24982 . . . . . . . 8  |-  ( (
ph  /\  k  e.  U )  ->  (  .1.  `  k )  =  1 )
4948neeq2d 2854 . . . . . . 7  |-  ( (
ph  /\  k  e.  U )  ->  (
( X `  k
)  =/=  (  .1.  `  k )  <->  ( X `  k )  =/=  1
) )
5027adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  U  e.  Fin )
51 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  Z )  =  (
Base `  Z )
524, 5, 9, 51, 8dchrf 24967 . . . . . . . . . . . 12  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
5351, 7unitss 18660 . . . . . . . . . . . . 13  |-  U  C_  ( Base `  Z )
5453sseli 3599 . . . . . . . . . . . 12  |-  ( a  e.  U  ->  a  e.  ( Base `  Z
) )
55 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( X : ( Base `  Z ) --> CC  /\  a  e.  ( Base `  Z ) )  -> 
( X `  a
)  e.  CC )
5652, 54, 55syl2an 494 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  U )  ->  ( X `  a )  e.  CC )
5756adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  ( X `  a )  e.  CC )
5850, 57fsumcl 14464 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ a  e.  U  ( X `  a )  e.  CC )
59 0cnd 10033 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
0  e.  CC )
6052adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  X : ( Base `  Z
) --> CC )
61 simprl 794 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
k  e.  U )
6253, 61sseldi 3601 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
k  e.  ( Base `  Z ) )
6360, 62ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( X `  k
)  e.  CC )
64 subcl 10280 . . . . . . . . . 10  |-  ( ( ( X `  k
)  e.  CC  /\  1  e.  CC )  ->  ( ( X `  k )  -  1 )  e.  CC )
6563, 28, 64sylancl 694 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( X `  k )  -  1 )  e.  CC )
66 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( X `  k
)  =/=  1 )
67 subeq0 10307 . . . . . . . . . . . 12  |-  ( ( ( X `  k
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( X `
 k )  - 
1 )  =  0  <-> 
( X `  k
)  =  1 ) )
6863, 28, 67sylancl 694 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  =  0  <-> 
( X `  k
)  =  1 ) )
6968necon3bid 2838 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  =/=  0  <->  ( X `  k )  =/=  1 ) )
7066, 69mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( X `  k )  -  1 )  =/=  0 )
71 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  (
k ( .r `  Z ) x )  =  ( k ( .r `  Z ) a ) )
7271fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( X `  ( k
( .r `  Z
) x ) )  =  ( X `  ( k ( .r
`  Z ) a ) ) )
7372cbvsumv 14426 . . . . . . . . . . . . . 14  |-  sum_ x  e.  U  ( X `  ( k ( .r
`  Z ) x ) )  =  sum_ a  e.  U  ( X `  ( k
( .r `  Z
) a ) )
744, 5, 9dchrmhm 24966 . . . . . . . . . . . . . . . . . 18  |-  D  C_  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )
7574, 8sseldi 3601 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )
7675ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )
7762adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  k  e.  ( Base `  Z )
)
7854adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  a  e.  ( Base `  Z )
)
79 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
8079, 51mgpbas 18495 . . . . . . . . . . . . . . . . 17  |-  ( Base `  Z )  =  (
Base `  (mulGrp `  Z
) )
81 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( .r
`  Z )  =  ( .r `  Z
)
8279, 81mgpplusg 18493 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  Z )  =  ( +g  `  (mulGrp `  Z ) )
83 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
84 cnfldmul 19752 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
8583, 84mgpplusg 18493 . . . . . . . . . . . . . . . . 17  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
8680, 82, 85mhmlin 17342 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  k  e.  ( Base `  Z )  /\  a  e.  ( Base `  Z ) )  ->  ( X `  ( k ( .r
`  Z ) a ) )  =  ( ( X `  k
)  x.  ( X `
 a ) ) )
8776, 77, 78, 86syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  ( X `  ( k ( .r
`  Z ) a ) )  =  ( ( X `  k
)  x.  ( X `
 a ) ) )
8887sumeq2dv 14433 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ a  e.  U  ( X `  ( k ( .r `  Z
) a ) )  =  sum_ a  e.  U  ( ( X `  k )  x.  ( X `  a )
) )
8973, 88syl5eq 2668 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ x  e.  U  ( X `  ( k ( .r `  Z
) x ) )  =  sum_ a  e.  U  ( ( X `  k )  x.  ( X `  a )
) )
90 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( a  =  ( k ( .r `  Z ) x )  ->  ( X `  a )  =  ( X `  ( k ( .r
`  Z ) x ) ) )
9111nnnn0d 11351 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
925zncrng 19893 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
93 crngring 18558 . . . . . . . . . . . . . . . . 17  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
94 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( (mulGrp `  Z )s  U )  =  ( (mulGrp `  Z )s  U
)
957, 94unitgrp 18667 . . . . . . . . . . . . . . . . 17  |-  ( Z  e.  Ring  ->  ( (mulGrp `  Z )s  U )  e.  Grp )
9691, 92, 93, 954syl 19 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( (mulGrp `  Z
)s 
U )  e.  Grp )
9796adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( (mulGrp `  Z
)s 
U )  e.  Grp )
98 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z
) c ) ) )  =  ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z
) c ) ) )
997, 94unitgrpbas 18666 . . . . . . . . . . . . . . . 16  |-  U  =  ( Base `  (
(mulGrp `  Z )s  U
) )
10094, 82ressplusg 15993 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  _V  ->  ( .r `  Z )  =  ( +g  `  (
(mulGrp `  Z )s  U
) ) )
10124, 100ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Z )  =  ( +g  `  (
(mulGrp `  Z )s  U
) )
10298, 99, 101grplactf1o 17519 . . . . . . . . . . . . . . 15  |-  ( ( ( (mulGrp `  Z
)s 
U )  e.  Grp  /\  k  e.  U )  ->  ( ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z
) c ) ) ) `  k ) : U -1-1-onto-> U )
10397, 61, 102syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z ) c ) ) ) `
 k ) : U -1-1-onto-> U )
10498, 99grplactval 17517 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  U  /\  x  e.  U )  ->  ( ( ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z
) c ) ) ) `  k ) `
 x )  =  ( k ( .r
`  Z ) x ) )
10561, 104sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  x  e.  U
)  ->  ( (
( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r
`  Z ) c ) ) ) `  k ) `  x
)  =  ( k ( .r `  Z
) x ) )
10690, 50, 103, 105, 57fsumf1o 14454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ a  e.  U  ( X `  a )  =  sum_ x  e.  U  ( X `  ( k ( .r `  Z
) x ) ) )
10750, 63, 57fsummulc2 14516 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( X `  k )  x.  sum_ a  e.  U  ( X `  a )
)  =  sum_ a  e.  U  ( ( X `  k )  x.  ( X `  a
) ) )
10889, 106, 1073eqtr4rd 2667 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( X `  k )  x.  sum_ a  e.  U  ( X `  a )
)  =  sum_ a  e.  U  ( X `  a ) )
10958mulid2d 10058 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( 1  x.  sum_ a  e.  U  ( X `  a )
)  =  sum_ a  e.  U  ( X `  a ) )
110108, 109oveq12d 6668 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  x. 
sum_ a  e.  U  ( X `  a ) )  -  ( 1  x.  sum_ a  e.  U  ( X `  a ) ) )  =  (
sum_ a  e.  U  ( X `  a )  -  sum_ a  e.  U  ( X `  a ) ) )
11158subidd 10380 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( sum_ a  e.  U  ( X `  a )  -  sum_ a  e.  U  ( X `  a ) )  =  0 )
112110, 111eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  x. 
sum_ a  e.  U  ( X `  a ) )  -  ( 1  x.  sum_ a  e.  U  ( X `  a ) ) )  =  0 )
113 1cnd 10056 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
1  e.  CC )
11463, 113, 58subdird 10487 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  x.  sum_ a  e.  U  ( X `  a )
)  =  ( ( ( X `  k
)  x.  sum_ a  e.  U  ( X `  a ) )  -  ( 1  x.  sum_ a  e.  U  ( X `  a )
) ) )
11565mul01d 10235 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  x.  0 )  =  0 )
116112, 114, 1153eqtr4d 2666 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  x.  sum_ a  e.  U  ( X `  a )
)  =  ( ( ( X `  k
)  -  1 )  x.  0 ) )
11758, 59, 65, 70, 116mulcanad 10662 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ a  e.  U  ( X `  a )  =  0 )
118117expr 643 . . . . . . 7  |-  ( (
ph  /\  k  e.  U )  ->  (
( X `  k
)  =/=  1  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
11949, 118sylbid 230 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  (
( X `  k
)  =/=  (  .1.  `  k )  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
12045, 119syl5bir 233 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  ( -.  ( X `  k
)  =  (  .1.  `  k )  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
121120rexlimdva 3031 . . . 4  |-  ( ph  ->  ( E. k  e.  U  -.  ( X `
 k )  =  (  .1.  `  k
)  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
12244, 121sylbid 230 . . 3  |-  ( ph  ->  ( -.  X  =  .1.  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
123122imp 445 . 2  |-  ( (
ph  /\  -.  X  =  .1.  )  ->  sum_ a  e.  U  ( X `  a )  =  0 )
1241, 2, 36, 123ifbothda 4123 1  |-  ( ph  -> 
sum_ a  e.  U  ( X `  a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266   NNcn 11020   NN0cn0 11292   #chash 13117   sum_csu 14416   phicphi 15469   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   MndHom cmhm 17333   Grpcgrp 17422   Abelcabl 18194  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548  Unitcui 18639  ℂfldccnfld 19746  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-phi 15471  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-dchr 24958
This theorem is referenced by:  dchrsum  24994
  Copyright terms: Public domain W3C validator