![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrvmasumlema | Structured version Visualization version GIF version |
Description: Lemma for dchrvmasum 25214 and dchrvmasumif 25192. Apply dchrisum 25181 for the function log(𝑦) / 𝑦, which is decreasing above e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrvmasumlema.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) |
Ref | Expression |
---|---|
dchrvmasumlema | ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
2 | rpvmasum.l | . . 3 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
3 | rpvmasum.a | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | rpvmasum.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | rpvmasum.d | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
6 | rpvmasum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
7 | dchrisum.b | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
8 | dchrisum.n1 | . . 3 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
9 | fveq2 6191 | . . . 4 ⊢ (𝑛 = 𝑥 → (log‘𝑛) = (log‘𝑥)) | |
10 | id 22 | . . . 4 ⊢ (𝑛 = 𝑥 → 𝑛 = 𝑥) | |
11 | 9, 10 | oveq12d 6668 | . . 3 ⊢ (𝑛 = 𝑥 → ((log‘𝑛) / 𝑛) = ((log‘𝑥) / 𝑥)) |
12 | 3nn 11186 | . . . 4 ⊢ 3 ∈ ℕ | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 3 ∈ ℕ) |
14 | relogcl 24322 | . . . . 5 ⊢ (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ) | |
15 | rerpdivcl 11861 | . . . . 5 ⊢ (((log‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ) | |
16 | 14, 15 | mpancom 703 | . . . 4 ⊢ (𝑛 ∈ ℝ+ → ((log‘𝑛) / 𝑛) ∈ ℝ) |
17 | 16 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ) |
18 | simp3r 1090 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) | |
19 | simp2l 1087 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ+) | |
20 | 19 | rpred 11872 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ) |
21 | ere 14819 | . . . . . . 7 ⊢ e ∈ ℝ | |
22 | 21 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ∈ ℝ) |
23 | 3re 11094 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 3 ∈ ℝ) |
25 | egt2lt3 14934 | . . . . . . . . 9 ⊢ (2 < e ∧ e < 3) | |
26 | 25 | simpri 478 | . . . . . . . 8 ⊢ e < 3 |
27 | 21, 23, 26 | ltleii 10160 | . . . . . . 7 ⊢ e ≤ 3 |
28 | 27 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 3) |
29 | simp3l 1089 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 3 ≤ 𝑛) | |
30 | 22, 24, 20, 28, 29 | letrd 10194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 𝑛) |
31 | simp2r 1088 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ+) | |
32 | 31 | rpred 11872 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
33 | 22, 20, 32, 30, 18 | letrd 10194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → e ≤ 𝑥) |
34 | logdivle 24368 | . . . . 5 ⊢ (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ e ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛))) | |
35 | 20, 30, 32, 33, 34 | syl22anc 1327 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛))) |
36 | 18, 35 | mpbid 222 | . . 3 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛)) |
37 | rpcn 11841 | . . . . . . 7 ⊢ (𝑛 ∈ ℝ+ → 𝑛 ∈ ℂ) | |
38 | 37 | cxp1d 24452 | . . . . . 6 ⊢ (𝑛 ∈ ℝ+ → (𝑛↑𝑐1) = 𝑛) |
39 | 38 | oveq2d 6666 | . . . . 5 ⊢ (𝑛 ∈ ℝ+ → ((log‘𝑛) / (𝑛↑𝑐1)) = ((log‘𝑛) / 𝑛)) |
40 | 39 | mpteq2ia 4740 | . . . 4 ⊢ (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) = (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛)) |
41 | 1rp 11836 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
42 | cxploglim 24704 | . . . . 5 ⊢ (1 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) ⇝𝑟 0) | |
43 | 41, 42 | mp1i 13 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐1))) ⇝𝑟 0) |
44 | 40, 43 | syl5eqbrr 4689 | . . 3 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛)) ⇝𝑟 0) |
45 | dchrvmasumlema.f | . . . 4 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) | |
46 | fveq2 6191 | . . . . . . 7 ⊢ (𝑎 = 𝑛 → (𝐿‘𝑎) = (𝐿‘𝑛)) | |
47 | 46 | fveq2d 6195 | . . . . . 6 ⊢ (𝑎 = 𝑛 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑛))) |
48 | fveq2 6191 | . . . . . . 7 ⊢ (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛)) | |
49 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝑛 → 𝑎 = 𝑛) | |
50 | 48, 49 | oveq12d 6668 | . . . . . 6 ⊢ (𝑎 = 𝑛 → ((log‘𝑎) / 𝑎) = ((log‘𝑛) / 𝑛)) |
51 | 47, 50 | oveq12d 6668 | . . . . 5 ⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎)) = ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
52 | 51 | cbvmptv 4750 | . . . 4 ⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
53 | 45, 52 | eqtri 2644 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · ((log‘𝑛) / 𝑛))) |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 17, 36, 44, 53 | dchrisum 25181 | . 2 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)))) |
55 | fveq2 6191 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (⌊‘𝑥) = (⌊‘𝑦)) | |
56 | 55 | fveq2d 6195 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , 𝐹)‘(⌊‘𝑦))) |
57 | 56 | oveq1d 6665 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡) = ((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) |
58 | 57 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡))) |
59 | fveq2 6191 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (log‘𝑥) = (log‘𝑦)) | |
60 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
61 | 59, 60 | oveq12d 6668 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((log‘𝑥) / 𝑥) = ((log‘𝑦) / 𝑦)) |
62 | 61 | oveq2d 6666 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑐 · ((log‘𝑥) / 𝑥)) = (𝑐 · ((log‘𝑦) / 𝑦))) |
63 | 58, 62 | breq12d 4666 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
64 | 63 | cbvralv 3171 | . . . . 5 ⊢ (∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))) |
65 | 64 | anbi2i 730 | . . . 4 ⊢ ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ (seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
66 | 65 | rexbii 3041 | . . 3 ⊢ (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
67 | 66 | exbii 1774 | . 2 ⊢ (∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
68 | 54, 67 | sylib 208 | 1 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 +∞cpnf 10071 < clt 10074 ≤ cle 10075 − cmin 10266 / cdiv 10684 ℕcn 11020 2c2 11070 3c3 11071 ℝ+crp 11832 [,)cico 12177 ⌊cfl 12591 seqcseq 12801 abscabs 13974 ⇝ cli 14215 ⇝𝑟 crli 14216 eceu 14793 Basecbs 15857 0gc0g 16100 ℤRHomczrh 19848 ℤ/nℤczn 19851 logclog 24301 ↑𝑐ccxp 24302 DChrcdchr 24957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-e 14799 df-sin 14800 df-cos 14801 df-pi 14803 df-dvds 14984 df-gcd 15217 df-phi 15471 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-qus 16169 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-rnghom 18715 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-limc 23630 df-dv 23631 df-log 24303 df-cxp 24304 df-dchr 24958 |
This theorem is referenced by: dchrvmasumif 25192 |
Copyright terms: Public domain | W3C validator |