MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulf Structured version   Visualization version   Unicode version

Theorem dvmulf 23706
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dvmulf  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )

Proof of Theorem dvmulf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5  |-  ( ph  ->  F : X --> CC )
21adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
3 dvaddf.df . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
4 dvbsss 23666 . . . . . 6  |-  dom  ( S  _D  F )  C_  S
53, 4syl6eqssr 3656 . . . . 5  |-  ( ph  ->  X  C_  S )
65adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
7 dvaddf.g . . . . 5  |-  ( ph  ->  G : X --> CC )
87adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
9 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
109adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
113eleq2d 2687 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
1211biimpar 502 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
13 dvaddf.dg . . . . . 6  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
1413eleq2d 2687 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
1514biimpar 502 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
162, 6, 8, 6, 10, 12, 15dvmul 23704 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  x.  G
) ) `  x
)  =  ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
1716mpteq2dva 4744 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G ) ) `  x ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
18 dvfg 23670 . . . . 5  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G )
) --> CC )
199, 18syl 17 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : dom  ( S  _D  ( F  oF  x.  G
) ) --> CC )
20 recnprss 23668 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
219, 20syl 17 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
22 mulcl 10020 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2322adantl 482 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
249, 5ssexd 4805 . . . . . . . 8  |-  ( ph  ->  X  e.  _V )
25 inidm 3822 . . . . . . . 8  |-  ( X  i^i  X )  =  X
2623, 1, 7, 24, 24, 25off 6912 . . . . . . 7  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
2721, 26, 5dvbss 23665 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  C_  X )
2821adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
29 fvexd 6203 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  e.  _V )
30 fvexd 6203 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  e.  _V )
31 dvfg 23670 . . . . . . . . . . . . . 14  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  F ) : dom  ( S  _D  F
) --> CC )
329, 31syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
3332adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
34 ffun 6048 . . . . . . . . . . . 12  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
35 funfvbrb 6330 . . . . . . . . . . . 12  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
3633, 34, 353syl 18 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
3712, 36mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
38 dvfg 23670 . . . . . . . . . . . . . 14  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  G ) : dom  ( S  _D  G
) --> CC )
399, 38syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
4039adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
41 ffun 6048 . . . . . . . . . . . 12  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
42 funfvbrb 6330 . . . . . . . . . . . 12  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
4340, 41, 423syl 18 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
4415, 43mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
45 eqid 2622 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
462, 6, 8, 6, 28, 29, 30, 37, 44, 45dvmulbr 23702 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  x.  G
) ) ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
47 reldv 23634 . . . . . . . . . 10  |-  Rel  ( S  _D  ( F  oF  x.  G )
)
4847releldmi 5362 . . . . . . . . 9  |-  ( x ( S  _D  ( F  oF  x.  G
) ) ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G )
) )
4946, 48syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G ) ) )
5049ex 450 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G )
) ) )
5150ssrdv 3609 . . . . . 6  |-  ( ph  ->  X  C_  dom  ( S  _D  ( F  oF  x.  G )
) )
5227, 51eqssd 3620 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  =  X )
5352feq2d 6031 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC  <->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC ) )
5419, 53mpbid 222 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC )
5554feqmptd 6249 . 2  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G
) ) `  x
) ) )
56 ovexd 6680 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  e.  _V )
57 ovexd 6680 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  G ) `  x
)  x.  ( F `
 x ) )  e.  _V )
58 fvexd 6203 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  _V )
593feq2d 6031 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6032, 59mpbid 222 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6160feqmptd 6249 . . . 4  |-  ( ph  ->  ( S  _D  F
)  =  ( x  e.  X  |->  ( ( S  _D  F ) `
 x ) ) )
627feqmptd 6249 . . . 4  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
6324, 29, 58, 61, 62offval2 6914 . . 3  |-  ( ph  ->  ( ( S  _D  F )  oF  x.  G )  =  ( x  e.  X  |->  ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
) ) )
64 fvexd 6203 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  _V )
6513feq2d 6031 . . . . . 6  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
6639, 65mpbid 222 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
6766feqmptd 6249 . . . 4  |-  ( ph  ->  ( S  _D  G
)  =  ( x  e.  X  |->  ( ( S  _D  G ) `
 x ) ) )
681feqmptd 6249 . . . 4  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
6924, 30, 64, 67, 68offval2 6914 . . 3  |-  ( ph  ->  ( ( S  _D  G )  oF  x.  F )  =  ( x  e.  X  |->  ( ( ( S  _D  G ) `  x )  x.  ( F `  x )
) ) )
7024, 56, 57, 63, 69offval2 6914 . 2  |-  ( ph  ->  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G
)  oF  x.  F ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
7117, 55, 703eqtr4d 2666 1  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935    + caddc 9939    x. cmul 9941   TopOpenctopn 16082  ℂfldccnfld 19746    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvcmulf  23708  dvexp  23716  dvmptmul  23724  expgrowth  38534  binomcxplemnotnn0  38555  dvmulcncf  40140
  Copyright terms: Public domain W3C validator