MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvef Structured version   Visualization version   GIF version

Theorem dvef 23743
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 23672 . . . . . . 7 (ℂ D exp):dom (ℂ D exp)⟶ℂ
2 dvbsss 23666 . . . . . . . . 9 dom (ℂ D exp) ⊆ ℂ
3 efcl 14813 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
4 fconstg 6092 . . . . . . . . . . . . . . . 16 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
53, 4syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
63snssd 4340 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
75, 6fssd 6057 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
8 ssid 3624 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
98a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
10 subcl 10280 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
1110ancoms 469 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
12 efcl 14813 . . . . . . . . . . . . . . . 16 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
1311, 12syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
14 eqid 2622 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))
1513, 14fmptd 6385 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
16 0cn 10032 . . . . . . . . . . . . . . 15 0 ∈ ℂ
1716a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 0 ∈ ℂ)
18 ax-1cn 9994 . . . . . . . . . . . . . . 15 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 1 ∈ ℂ)
2016elexi 3213 . . . . . . . . . . . . . . . . . 18 0 ∈ V
2120snid 4208 . . . . . . . . . . . . . . . . 17 0 ∈ {0}
22 opelxpi 5148 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
2321, 22mpan2 707 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
24 dvconst 23680 . . . . . . . . . . . . . . . . 17 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
253, 24syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
2623, 25eleqtrrd 2704 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
27 df-br 4654 . . . . . . . . . . . . . . 15 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
2826, 27sylibr 224 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
29 eff 14812 . . . . . . . . . . . . . . . . . 18 exp:ℂ⟶ℂ
3029a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
31 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
3211, 31fmptd 6385 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
33 oveq1 6657 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
34 ovex 6678 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑥) ∈ V
3533, 31, 34fvmpt 6282 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
36 subid 10300 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
3735, 36eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
38 dveflem 23742 . . . . . . . . . . . . . . . . . 18 0(ℂ D exp)1
3937, 38syl6eqbr 4692 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
4018elexi 3213 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ V
4140snid 4208 . . . . . . . . . . . . . . . . . . . 20 1 ∈ {1}
42 opelxpi 5148 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
4341, 42mpan2 707 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
44 cnelprrecn 10029 . . . . . . . . . . . . . . . . . . . . . 22 ℂ ∈ {ℝ, ℂ}
4544a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
46 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
4718a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
4845dvmptid 23720 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
49 simpl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
5016a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
51 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
5245, 51dvmptc 23721 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
5345, 46, 47, 48, 49, 50, 52dvmptsub 23730 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
54 1m0e1 11131 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 0) = 1
5554mpteq2i 4741 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
56 fconstmpt 5163 . . . . . . . . . . . . . . . . . . . . 21 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
5755, 56eqtr4i 2647 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
5853, 57syl6eq 2672 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
5943, 58eleqtrrd 2704 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
60 df-br 4654 . . . . . . . . . . . . . . . . . 18 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
6159, 60sylibr 224 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
62 eqid 2622 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6330, 9, 32, 9, 9, 9, 19, 19, 39, 61, 62dvcobr 23709 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
64 1t1e1 11175 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
6563, 64syl6breq 4694 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
66 eqidd 2623 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥)))
6730feqmptd 6249 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
68 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑧𝑥) → (exp‘𝑦) = (exp‘(𝑧𝑥)))
6911, 66, 67, 68fmptco 6396 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
7069oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
7170breqd 4664 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1 ↔ 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1))
7265, 71mpbid 222 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
737, 9, 15, 9, 9, 17, 19, 28, 72, 62dvmulbr 23702 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
7415, 51ffvelrnd 6360 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
7574mul02d 10234 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
76 fvex 6201 . . . . . . . . . . . . . . . . . 18 (exp‘𝑥) ∈ V
7776fvconst2 6469 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
7877oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
793mulid2d 10058 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
8078, 79eqtrd 2656 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
8175, 80oveq12d 6668 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
823addid2d 10237 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
8381, 82eqtrd 2656 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
8473, 83breqtrd 4679 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
85 cnex 10017 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
8685a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ℂ ∈ V)
8776a1i 11 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ V)
88 fvex 6201 . . . . . . . . . . . . . . . . 17 (exp‘(𝑧𝑥)) ∈ V
8988a1i 11 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ V)
90 fconstmpt 5163 . . . . . . . . . . . . . . . . 17 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
9190a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
92 eqidd 2623 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
9386, 87, 89, 91, 92offval2 6914 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
9430feqmptd 6249 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
95 efadd 14824 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
9611, 95syldan 487 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
97 pncan3 10289 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
9897fveq2d 6195 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
9996, 98eqtr3d 2658 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
10099mpteq2dva 4744 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
10194, 100eqtr4d 2659 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
10293, 101eqtr4d 2659 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
103102oveq2d 6666 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
104103breqd 4664 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥) ↔ 𝑥(ℂ D exp)(exp‘𝑥)))
10584, 104mpbid 222 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
106 vex 3203 . . . . . . . . . . . 12 𝑥 ∈ V
107106, 76breldm 5329 . . . . . . . . . . 11 (𝑥(ℂ D exp)(exp‘𝑥) → 𝑥 ∈ dom (ℂ D exp))
108105, 107syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
109108ssriv 3607 . . . . . . . . 9 ℂ ⊆ dom (ℂ D exp)
1102, 109eqssi 3619 . . . . . . . 8 dom (ℂ D exp) = ℂ
111110feq2i 6037 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
1121, 111mpbi 220 . . . . . 6 (ℂ D exp):ℂ⟶ℂ
113112a1i 11 . . . . 5 (⊤ → (ℂ D exp):ℂ⟶ℂ)
114113feqmptd 6249 . . . 4 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
115 ffun 6048 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
1161, 115ax-mp 5 . . . . . 6 Fun (ℂ D exp)
117 funbrfv 6234 . . . . . 6 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
118116, 105, 117mpsyl 68 . . . . 5 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
119118mpteq2ia 4740 . . . 4 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
120114, 119syl6eq 2672 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
12129a1i 11 . . . 4 (⊤ → exp:ℂ⟶ℂ)
122121feqmptd 6249 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
123120, 122eqtr4d 2659 . 2 (⊤ → (ℂ D exp) = exp)
124123trud 1493 1 (ℂ D exp) = exp
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wtru 1484  wcel 1990  Vcvv 3200  wss 3574  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ccom 5118  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  expce 14792  TopOpenctopn 16082  fldccnfld 19746   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvsincos  23744  efcn  24197  efcvx  24203  pige3  24269  dvrelog  24383  dvlog  24397  dvcxp1  24481  dvcxp2  24482  dvcncxp1  24484  itgexpif  30684  dvsef  38531  expgrowthi  38532  expgrowth  38534
  Copyright terms: Public domain W3C validator