![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdvposlt | Structured version Visualization version GIF version |
Description: Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
fdvposlt.d | ⊢ 𝐸 = (𝐶(,)𝐷) |
fdvposlt.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
fdvposlt.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
fdvposlt.f | ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) |
fdvposlt.c | ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) |
fdvposlt.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
fdvposlt.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) |
Ref | Expression |
---|---|
fdvposlt | ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdvposlt.lt | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | fdvposlt.d | . . . . . . . . 9 ⊢ 𝐸 = (𝐶(,)𝐷) | |
3 | ioossre 12235 | . . . . . . . . 9 ⊢ (𝐶(,)𝐷) ⊆ ℝ | |
4 | 2, 3 | eqsstri 3635 | . . . . . . . 8 ⊢ 𝐸 ⊆ ℝ |
5 | fdvposlt.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
6 | 4, 5 | sseldi 3601 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | fdvposlt.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
8 | 4, 7 | sseldi 3601 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
9 | 6, 8 | posdifd 10614 | . . . . . 6 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
10 | 1, 9 | mpbid 222 | . . . . 5 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
11 | 6, 8, 1 | ltled 10185 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
12 | volioo 23337 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
13 | 6, 8, 11, 12 | syl3anc 1326 | . . . . 5 ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
14 | 10, 13 | breqtrrd 4681 | . . . 4 ⊢ (𝜑 → 0 < (vol‘(𝐴(,)𝐵))) |
15 | ioossicc 12259 | . . . . . 6 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
17 | ioombl 23333 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
19 | fdvposlt.c | . . . . . . . 8 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℝ)) | |
20 | cncff 22696 | . . . . . . . 8 ⊢ ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ) | |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ) |
22 | 21 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
23 | 2, 5, 7 | fct2relem 30675 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
24 | 23 | sselda 3603 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ 𝐸) |
25 | 22, 24 | ffvelrnd 6360 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
26 | ax-resscn 9993 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
27 | ssid 3624 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
28 | cncfss 22702 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) | |
29 | 26, 27, 28 | mp2an 708 | . . . . . . 7 ⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
30 | 21, 23 | feqresmpt 6250 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥))) |
31 | rescncf 22700 | . . . . . . . . 9 ⊢ ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
32 | 23, 19, 31 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
33 | 30, 32 | eqeltrrd 2702 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
34 | 29, 33 | sseldi 3601 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
35 | cniccibl 23607 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) | |
36 | 6, 8, 34, 35 | syl3anc 1326 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
37 | 16, 18, 25, 36 | iblss 23571 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑥)) ∈ 𝐿1) |
38 | 21 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ) |
39 | 16 | sselda 3603 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
40 | 39, 24 | syldan 487 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ 𝐸) |
41 | 38, 40 | ffvelrnd 6360 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
42 | fdvposlt.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D 𝐹)‘𝑥)) | |
43 | elrp 11834 | . . . . 5 ⊢ (((ℝ D 𝐹)‘𝑥) ∈ ℝ+ ↔ (((ℝ D 𝐹)‘𝑥) ∈ ℝ ∧ 0 < ((ℝ D 𝐹)‘𝑥))) | |
44 | 41, 42, 43 | sylanbrc 698 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ+) |
45 | 14, 37, 44 | itggt0 23608 | . . 3 ⊢ (𝜑 → 0 < ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥) |
46 | fdvposlt.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐸⟶ℝ) | |
47 | fss 6056 | . . . . 5 ⊢ ((𝐹:𝐸⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐸⟶ℂ) | |
48 | 46, 26, 47 | sylancl 694 | . . . 4 ⊢ (𝜑 → 𝐹:𝐸⟶ℂ) |
49 | cncfss 22702 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ)) | |
50 | 26, 27, 49 | mp2an 708 | . . . . 5 ⊢ (𝐸–cn→ℝ) ⊆ (𝐸–cn→ℂ) |
51 | 50, 19 | sseldi 3601 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (𝐸–cn→ℂ)) |
52 | 2, 5, 7, 11, 48, 51 | ftc2re 30676 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) d𝑥 = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
53 | 45, 52 | breqtrd 4679 | . 2 ⊢ (𝜑 → 0 < ((𝐹‘𝐵) − (𝐹‘𝐴))) |
54 | 46, 5 | ffvelrnd 6360 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
55 | 46, 7 | ffvelrnd 6360 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
56 | 54, 55 | posdifd 10614 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) < (𝐹‘𝐵) ↔ 0 < ((𝐹‘𝐵) − (𝐹‘𝐴)))) |
57 | 53, 56 | mpbird 247 | 1 ⊢ (𝜑 → (𝐹‘𝐴) < (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 ↾ cres 5116 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 < clt 10074 ≤ cle 10075 − cmin 10266 ℝ+crp 11832 (,)cioo 12175 [,]cicc 12178 –cn→ccncf 22679 volcvol 23232 𝐿1cibl 23386 ∫citg 23387 D cdv 23627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-cmp 21190 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-ovol 23233 df-vol 23234 df-mbf 23388 df-itg1 23389 df-itg2 23390 df-ibl 23391 df-itg 23392 df-0p 23437 df-limc 23630 df-dv 23631 |
This theorem is referenced by: fdvneggt 30678 |
Copyright terms: Public domain | W3C validator |