MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Structured version   Visualization version   GIF version

Theorem harmonicbnd4 24737
Description: The asymptotic behavior of Σ𝑚𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Distinct variable group:   𝐴,𝑚

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 12772 . . . . . 6 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 12370 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
32adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
43nnrecred 11066 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
51, 4fsumrecl 14465 . . . . 5 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
65recnd 10068 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ)
7 relogcl 24322 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
87recnd 10068 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
9 emre 24732 . . . . . 6 γ ∈ ℝ
109a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → γ ∈ ℝ)
1110recnd 10068 . . . 4 (𝐴 ∈ ℝ+ → γ ∈ ℂ)
126, 8, 11subsub4d 10423 . . 3 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))
1312fveq2d 6195 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))))
14 rpreccl 11857 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
1514rpred 11872 . . . . 5 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
16 resubcl 10345 . . . . 5 ((γ ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (γ − (1 / 𝐴)) ∈ ℝ)
179, 15, 16sylancr 695 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ∈ ℝ)
18 rprege0 11847 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
19 flge0nn0 12621 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2018, 19syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
21 nn0p1nn 11332 . . . . . . . 8 ((⌊‘𝐴) ∈ ℕ0 → ((⌊‘𝐴) + 1) ∈ ℕ)
2220, 21syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℕ)
2322nnrpd 11870 . . . . . 6 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ+)
24 relogcl 24322 . . . . . 6 (((⌊‘𝐴) + 1) ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
2523, 24syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
265, 25resubcld 10458 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
275, 7resubcld 10458 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∈ ℝ)
2822nnrecred 11066 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℝ)
29 fzfid 12772 . . . . . . . 8 (𝐴 ∈ ℝ+ → (1...((⌊‘𝐴) + 1)) ∈ Fin)
30 elfznn 12370 . . . . . . . . . 10 (𝑚 ∈ (1...((⌊‘𝐴) + 1)) → 𝑚 ∈ ℕ)
3130adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → 𝑚 ∈ ℕ)
3231nnrecred 11066 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℝ)
3329, 32fsumrecl 14465 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℝ)
3433, 25resubcld 10458 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
35 harmonicbnd 24730 . . . . . . . 8 (((⌊‘𝐴) + 1) ∈ ℕ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
3622, 35syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
37 1re 10039 . . . . . . . . 9 1 ∈ ℝ
389, 37elicc2i 12239 . . . . . . . 8 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ 1))
3938simp2bi 1077 . . . . . . 7 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
4036, 39syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
41 rpre 11839 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
42 fllep1 12602 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
4341, 42syl 17 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
44 rpregt0 11846 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
4522nnred 11035 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ)
4622nngt0d 11064 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < ((⌊‘𝐴) + 1))
47 lerec 10906 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (((⌊‘𝐴) + 1) ∈ ℝ ∧ 0 < ((⌊‘𝐴) + 1))) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4844, 45, 46, 47syl12anc 1324 . . . . . . 7 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4943, 48mpbid 222 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴))
5010, 28, 34, 15, 40, 49le2subd 10647 . . . . 5 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))))
5133recnd 10068 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℂ)
5225recnd 10068 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℂ)
5328recnd 10068 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℂ)
5451, 52, 53sub32d 10424 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))))
55 nnuz 11723 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
5622, 55syl6eleq 2711 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ (ℤ‘1))
5732recnd 10068 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℂ)
58 oveq2 6658 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝐴) + 1) → (1 / 𝑚) = (1 / ((⌊‘𝐴) + 1)))
5956, 57, 58fsumm1 14480 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6020nn0cnd 11353 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℂ)
61 ax-1cn 9994 . . . . . . . . . . . . . 14 1 ∈ ℂ
62 pncan 10287 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6360, 61, 62sylancl 694 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6463oveq2d 6666 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1...(((⌊‘𝐴) + 1) − 1)) = (1...(⌊‘𝐴)))
6564sumeq1d 14431 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
6665oveq1d 6665 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6759, 66eqtrd 2656 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6867oveq1d 6665 . . . . . . . 8 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))))
696, 53pncand 10393 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
7068, 69eqtrd 2656 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
7170oveq1d 6665 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7254, 71eqtrd 2656 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7350, 72breqtrd 4679 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
74 logleb 24349 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ ((⌊‘𝐴) + 1) ∈ ℝ+) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7523, 74mpdan 702 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7643, 75mpbid 222 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1)))
777, 25, 5, 76lesub2dd 10644 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7817, 26, 27, 73, 77letrd 10194 . . 3 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7927, 15resubcld 10458 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ∈ ℝ)
8015recnd 10068 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℂ)
816, 8, 80subsub4d 10423 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))))
827, 15readdcld 10069 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘𝐴) + (1 / 𝐴)) ∈ ℝ)
83 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
8423, 83relogdivd 24372 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) = ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)))
85 rerpdivcl 11861 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8645, 85mpancom 703 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8737a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → 1 ∈ ℝ)
8887, 15readdcld 10069 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ)
8915reefcld 14818 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ)
9061a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 1 ∈ ℂ)
91 rpcnne0 11850 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
92 divdir 10710 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
9360, 90, 91, 92syl3anc 1326 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
94 reflcl 12597 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
9541, 94syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
96 rerpdivcl 11861 . . . . . . . . . . . . . . 15 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
9795, 96mpancom 703 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
98 flle 12600 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
9941, 98syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ 𝐴)
100 rpcn 11841 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
101100mulid1d 10057 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (𝐴 · 1) = 𝐴)
10299, 101breqtrrd 4681 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ (𝐴 · 1))
103 ledivmul 10899 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
10495, 87, 44, 103syl3anc 1326 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
105102, 104mpbird 247 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ≤ 1)
10697, 87, 15, 105leadd1dd 10641 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)) ≤ (1 + (1 / 𝐴)))
10793, 106eqbrtrd 4675 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (1 + (1 / 𝐴)))
108 efgt1p 14845 . . . . . . . . . . . . . 14 ((1 / 𝐴) ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
10914, 108syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
11088, 89, 109ltled 10185 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ≤ (exp‘(1 / 𝐴)))
11186, 88, 89, 107, 110letrd 10194 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)))
112 rpdivcl 11856 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ+𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11323, 112mpancom 703 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11415rpefcld 14835 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ+)
115113, 114logled 24373 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → ((((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)) ↔ (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴)))))
116111, 115mpbid 222 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴))))
11715relogefd 24374 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(exp‘(1 / 𝐴))) = (1 / 𝐴))
118116, 117breqtrd 4679 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (1 / 𝐴))
11984, 118eqbrtrrd 4677 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴))
12025, 7, 15lesubadd2d 10626 . . . . . . . 8 (𝐴 ∈ ℝ+ → (((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴) ↔ (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴))))
121119, 120mpbid 222 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴)))
12225, 82, 5, 121lesub2dd 10644 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
12381, 122eqbrtrd 4675 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
124 harmonicbnd3 24734 . . . . . . 7 ((⌊‘𝐴) ∈ ℕ0 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
12520, 124syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
126 0re 10040 . . . . . . . 8 0 ∈ ℝ
127126, 9elicc2i 12239 . . . . . . 7 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) ↔ ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ 0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ))
128127simp3bi 1078 . . . . . 6 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
129125, 128syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
13079, 26, 10, 123, 129letrd 10194 . . . 4 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ)
13127, 15, 10lesubaddd 10624 . . . 4 (𝐴 ∈ ℝ+ → (((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ ↔ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴))))
132130, 131mpbid 222 . . 3 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))
13327, 10, 15absdifled 14173 . . 3 (𝐴 ∈ ℝ+ → ((abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴) ↔ ((γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))))
13478, 132, 133mpbir2and 957 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴))
13513, 134eqbrtrrd 4677 1 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cuz 11687  +crp 11832  [,]cicc 12178  ...cfz 12326  cfl 12591  abscabs 13974  Σcsu 14416  expce 14792  logclog 24301  γcem 24718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-em 24719
This theorem is referenced by:  mulogsumlem  25220  mulog2sumlem1  25223
  Copyright terms: Public domain W3C validator