MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coghm Structured version   Visualization version   GIF version

Theorem pi1coghm 22861
Description: The mapping 𝐺 between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p 𝑃 = (𝐽 π1 𝐴)
pi1co.q 𝑄 = (𝐾 π1 𝐵)
pi1co.v 𝑉 = (Base‘𝑃)
pi1co.g 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
pi1co.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1co.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
pi1co.a (𝜑𝐴𝑋)
pi1co.b (𝜑 → (𝐹𝐴) = 𝐵)
Assertion
Ref Expression
pi1coghm (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝜑,𝑔   𝑔,𝐾   𝑃,𝑔   𝑄,𝑔   𝑔,𝑉
Allowed substitution hints:   𝐵(𝑔)   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1coghm
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 pi1co.a . . . 4 (𝜑𝐴𝑋)
3 pi1co.p . . . . 5 𝑃 = (𝐽 π1 𝐴)
43pi1grp 22850 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑃 ∈ Grp)
51, 2, 4syl2anc 693 . . 3 (𝜑𝑃 ∈ Grp)
6 pi1co.f . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
7 cntop2 21045 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
9 eqid 2622 . . . . . 6 𝐾 = 𝐾
109toptopon 20722 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
118, 10sylib 208 . . . 4 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
12 pi1co.b . . . . 5 (𝜑 → (𝐹𝐴) = 𝐵)
13 cnf2 21053 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋 𝐾)
141, 11, 6, 13syl3anc 1326 . . . . . 6 (𝜑𝐹:𝑋 𝐾)
1514, 2ffvelrnd 6360 . . . . 5 (𝜑 → (𝐹𝐴) ∈ 𝐾)
1612, 15eqeltrrd 2702 . . . 4 (𝜑𝐵 𝐾)
17 pi1co.q . . . . 5 𝑄 = (𝐾 π1 𝐵)
1817pi1grp 22850 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐵 𝐾) → 𝑄 ∈ Grp)
1911, 16, 18syl2anc 693 . . 3 (𝜑𝑄 ∈ Grp)
205, 19jca 554 . 2 (𝜑 → (𝑃 ∈ Grp ∧ 𝑄 ∈ Grp))
21 pi1co.v . . . 4 𝑉 = (Base‘𝑃)
22 pi1co.g . . . 4 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
233, 17, 21, 22, 1, 6, 2, 12pi1cof 22859 . . 3 (𝜑𝐺:𝑉⟶(Base‘𝑄))
2421a1i 11 . . . . . . . 8 (𝜑𝑉 = (Base‘𝑃))
253, 1, 2, 24pi1bas2 22841 . . . . . . 7 (𝜑𝑉 = ( 𝑉 / ( ≃ph𝐽)))
2625eleq2d 2687 . . . . . 6 (𝜑 → (𝑦𝑉𝑦 ∈ ( 𝑉 / ( ≃ph𝐽))))
2726biimpa 501 . . . . 5 ((𝜑𝑦𝑉) → 𝑦 ∈ ( 𝑉 / ( ≃ph𝐽)))
28 eqid 2622 . . . . . 6 ( 𝑉 / ( ≃ph𝐽)) = ( 𝑉 / ( ≃ph𝐽))
29 oveq1 6657 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧) = (𝑦(+g𝑃)𝑧))
3029fveq2d 6195 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = (𝐺‘(𝑦(+g𝑃)𝑧)))
31 fveq2 6191 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘[𝑓]( ≃ph𝐽)) = (𝐺𝑦))
3231oveq1d 6665 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
3330, 32eqeq12d 2637 . . . . . . 7 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
3433ralbidv 2986 . . . . . 6 ([𝑓]( ≃ph𝐽) = 𝑦 → (∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
35 oveq2 6658 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧))
3635fveq2d 6195 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)))
37 fveq2 6191 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘[]( ≃ph𝐽)) = (𝐺𝑧))
3837oveq2d 6666 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
3936, 38eqeq12d 2637 . . . . . . . . 9 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) ↔ (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
403, 1, 2, 24pi1eluni 22842 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 𝑉 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐴)))
4140biimpa 501 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐴))
4241simp1d 1073 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → 𝑓 ∈ (II Cn 𝐽))
4342adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑓 ∈ (II Cn 𝐽))
441adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
452adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝐴𝑋)
4621a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝑉 = (Base‘𝑃))
473, 44, 45, 46pi1eluni 22842 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ( 𝑉 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = 𝐴 ∧ (‘1) = 𝐴)))
4847biimpa 501 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ( ∈ (II Cn 𝐽) ∧ (‘0) = 𝐴 ∧ (‘1) = 𝐴))
4948simp1d 1073 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ∈ (II Cn 𝐽))
5041simp3d 1075 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓‘1) = 𝐴)
5150adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘1) = 𝐴)
5248simp2d 1074 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (‘0) = 𝐴)
5351, 52eqtr4d 2659 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘1) = (‘0))
546ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
5543, 49, 53, 54copco 22818 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹 ∘ (𝑓(*𝑝𝐽))) = ((𝐹𝑓)(*𝑝𝐾)(𝐹)))
5655eceq1d 7783 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾) = [((𝐹𝑓)(*𝑝𝐾)(𝐹))]( ≃ph𝐾))
5743, 49, 53pcocn 22817 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽))
5843, 49pco0 22814 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘0) = (𝑓‘0))
5941simp2d 1074 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓‘0) = 𝐴)
6059adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘0) = 𝐴)
6158, 60eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘0) = 𝐴)
6243, 49pco1 22815 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘1) = (‘1))
6348simp3d 1075 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (‘1) = 𝐴)
6462, 63eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘1) = 𝐴)
651ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
662ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐴𝑋)
6721a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑉 = (Base‘𝑃))
683, 65, 66, 67pi1eluni 22842 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽)) ∈ 𝑉 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = 𝐴 ∧ ((𝑓(*𝑝𝐽))‘1) = 𝐴)))
6957, 61, 64, 68mpbir3and 1245 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓(*𝑝𝐽)) ∈ 𝑉)
703, 17, 21, 22, 1, 6, 2, 12pi1coval 22860 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓(*𝑝𝐽)) ∈ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
7170adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ (𝑓(*𝑝𝐽)) ∈ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
7269, 71syldan 487 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
73 eqid 2622 . . . . . . . . . . . 12 (Base‘𝑄) = (Base‘𝑄)
7411ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
7516ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐵 𝐾)
76 eqid 2622 . . . . . . . . . . . 12 (+g𝑄) = (+g𝑄)
776adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
78 cnco 21070 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑓) ∈ (II Cn 𝐾))
7942, 77, 78syl2anc 693 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → (𝐹𝑓) ∈ (II Cn 𝐾))
80 iitopon 22682 . . . . . . . . . . . . . . . . . 18 II ∈ (TopOn‘(0[,]1))
8180a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 𝑉) → II ∈ (TopOn‘(0[,]1)))
82 cnf2 21053 . . . . . . . . . . . . . . . . 17 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (II Cn 𝐽)) → 𝑓:(0[,]1)⟶𝑋)
8381, 44, 42, 82syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝑓:(0[,]1)⟶𝑋)
84 0elunit 12290 . . . . . . . . . . . . . . . 16 0 ∈ (0[,]1)
85 fvco3 6275 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑓)‘0) = (𝐹‘(𝑓‘0)))
8683, 84, 85sylancl 694 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘0) = (𝐹‘(𝑓‘0)))
8759fveq2d 6195 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹‘(𝑓‘0)) = (𝐹𝐴))
8812adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹𝐴) = 𝐵)
8986, 87, 883eqtrd 2660 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘0) = 𝐵)
90 1elunit 12291 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
91 fvco3 6275 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑓)‘1) = (𝐹‘(𝑓‘1)))
9283, 90, 91sylancl 694 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘1) = (𝐹‘(𝑓‘1)))
9350fveq2d 6195 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹‘(𝑓‘1)) = (𝐹𝐴))
9492, 93, 883eqtrd 2660 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘1) = 𝐵)
9511adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
9616adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐵 𝐾)
97 eqidd 2623 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (Base‘𝑄) = (Base‘𝑄))
9817, 95, 96, 97pi1eluni 22842 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓) ∈ (Base‘𝑄) ↔ ((𝐹𝑓) ∈ (II Cn 𝐾) ∧ ((𝐹𝑓)‘0) = 𝐵 ∧ ((𝐹𝑓)‘1) = 𝐵)))
9979, 89, 94, 98mpbir3and 1245 . . . . . . . . . . . . 13 ((𝜑𝑓 𝑉) → (𝐹𝑓) ∈ (Base‘𝑄))
10099adantr 481 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹𝑓) ∈ (Base‘𝑄))
101 cnco 21070 . . . . . . . . . . . . . 14 (( ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹) ∈ (II Cn 𝐾))
10249, 54, 101syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹) ∈ (II Cn 𝐾))
10380a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 𝑉) ∧ 𝑉) → II ∈ (TopOn‘(0[,]1)))
104 cnf2 21053 . . . . . . . . . . . . . . . 16 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ ∈ (II Cn 𝐽)) → :(0[,]1)⟶𝑋)
105103, 65, 49, 104syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝜑𝑓 𝑉) ∧ 𝑉) → :(0[,]1)⟶𝑋)
106 fvco3 6275 . . . . . . . . . . . . . . 15 ((:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹)‘0) = (𝐹‘(‘0)))
107105, 84, 106sylancl 694 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘0) = (𝐹‘(‘0)))
10852fveq2d 6195 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹‘(‘0)) = (𝐹𝐴))
10912ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹𝐴) = 𝐵)
110107, 108, 1093eqtrd 2660 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘0) = 𝐵)
111 fvco3 6275 . . . . . . . . . . . . . . 15 ((:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹)‘1) = (𝐹‘(‘1)))
112105, 90, 111sylancl 694 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘1) = (𝐹‘(‘1)))
11363fveq2d 6195 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹‘(‘1)) = (𝐹𝐴))
114112, 113, 1093eqtrd 2660 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘1) = 𝐵)
115 eqidd 2623 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
11617, 11, 16, 115pi1eluni 22842 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹) ∈ (Base‘𝑄) ↔ ((𝐹) ∈ (II Cn 𝐾) ∧ ((𝐹)‘0) = 𝐵 ∧ ((𝐹)‘1) = 𝐵)))
117116ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹) ∈ (Base‘𝑄) ↔ ((𝐹) ∈ (II Cn 𝐾) ∧ ((𝐹)‘0) = 𝐵 ∧ ((𝐹)‘1) = 𝐵)))
118102, 110, 114, 117mpbir3and 1245 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹) ∈ (Base‘𝑄))
11917, 73, 74, 75, 76, 100, 118pi1addval 22848 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)) = [((𝐹𝑓)(*𝑝𝐾)(𝐹))]( ≃ph𝐾))
12056, 72, 1193eqtr4d 2666 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)))
121 eqid 2622 . . . . . . . . . . . 12 (+g𝑃) = (+g𝑃)
122 simplr 792 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑓 𝑉)
123 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑉)
1243, 21, 65, 66, 121, 122, 123pi1addval 22848 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = [(𝑓(*𝑝𝐽))]( ≃ph𝐽))
125124fveq2d 6195 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)))
1263, 17, 21, 22, 1, 6, 2, 12pi1coval 22860 . . . . . . . . . . . 12 ((𝜑𝑓 𝑉) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐹𝑓)]( ≃ph𝐾))
127126adantr 481 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐹𝑓)]( ≃ph𝐾))
1283, 17, 21, 22, 1, 6, 2, 12pi1coval 22860 . . . . . . . . . . . 12 ((𝜑 𝑉) → (𝐺‘[]( ≃ph𝐽)) = [(𝐹)]( ≃ph𝐾))
129128adantlr 751 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[]( ≃ph𝐽)) = [(𝐹)]( ≃ph𝐾))
130127, 129oveq12d 6668 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)))
131120, 125, 1303eqtr4d 2666 . . . . . . . . 9 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
13228, 39, 131ectocld 7814 . . . . . . . 8 (((𝜑𝑓 𝑉) ∧ 𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
133132ralrimiva 2966 . . . . . . 7 ((𝜑𝑓 𝑉) → ∀𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))(𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
13425adantr 481 . . . . . . . 8 ((𝜑𝑓 𝑉) → 𝑉 = ( 𝑉 / ( ≃ph𝐽)))
135134raleqdv 3144 . . . . . . 7 ((𝜑𝑓 𝑉) → (∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))(𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
136133, 135mpbird 247 . . . . . 6 ((𝜑𝑓 𝑉) → ∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
13728, 34, 136ectocld 7814 . . . . 5 ((𝜑𝑦 ∈ ( 𝑉 / ( ≃ph𝐽))) → ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
13827, 137syldan 487 . . . 4 ((𝜑𝑦𝑉) → ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
139138ralrimiva 2966 . . 3 (𝜑 → ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
14023, 139jca 554 . 2 (𝜑 → (𝐺:𝑉⟶(Base‘𝑄) ∧ ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
14121, 73, 121, 76isghm 17660 . 2 (𝐺 ∈ (𝑃 GrpHom 𝑄) ↔ ((𝑃 ∈ Grp ∧ 𝑄 ∈ Grp) ∧ (𝐺:𝑉⟶(Base‘𝑄) ∧ ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))))
14220, 140, 141sylanbrc 698 1 (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cop 4183   cuni 4436  cmpt 4729  ran crn 5115  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  [cec 7740   / cqs 7741  0cc0 9936  1c1 9937  [,]cicc 12178  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422   GrpHom cghm 17657  Topctop 20698  TopOnctopon 20715   Cn ccn 21028  IIcii 22678  phcphtpc 22768  *𝑝cpco 22800   π1 cpi1 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-mulg 17541  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805  df-om1 22806  df-pi1 22808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator