MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleme Structured version   Visualization version   Unicode version

Theorem pntleme 25297
Description: Lemma for pnt 25303. Package up pntlemo 25296 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntleme.U  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
pntleme.K  |-  ( ph  ->  A. k  e.  ( K [,) +oo ) A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
pntleme.C  |-  ( ph  ->  A. z  e.  ( 1 (,) +oo )
( ( ( ( abs `  ( R `
 z ) )  x.  ( log `  z
) )  -  (
( 2  /  ( log `  z ) )  x.  sum_ i  e.  ( 1 ... ( |_
`  ( z  /  Y ) ) ) ( ( abs `  ( R `  ( z  /  i ) ) )  x.  ( log `  i ) ) ) )  /  z )  <_  C )
Assertion
Ref Expression
pntleme  |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
Distinct variable groups:    z, C    w, F    y, z    u, k, y, z, L    k, K, y, z    ph, v    i, k, u, v, w, y, z, R    w, U, z    v, W, w, z    k, X, y, z    i, Y, z   
k, a, u, v, y, z, E
Allowed substitution hints:    ph( y, z, w, u, i, k, a)    A( y, z, w, v, u, i, k, a)    B( y, z, w, v, u, i, k, a)    C( y, w, v, u, i, k, a)    D( y, z, w, v, u, i, k, a)    R( a)    U( y, v, u, i, k, a)    E( w, i)    F( y, z, v, u, i, k, a)    K( w, v, u, i, a)    L( w, v, i, a)    W( y, u, i, k, a)    X( w, v, u, i, a)    Y( y, w, v, u, k, a)

Proof of Theorem pntleme
StepHypRef Expression
1 pntlem1.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem1.a . . 3  |-  ( ph  ->  A  e.  RR+ )
3 pntlem1.b . . 3  |-  ( ph  ->  B  e.  RR+ )
4 pntlem1.l . . 3  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlem1.d . . 3  |-  D  =  ( A  +  1 )
6 pntlem1.f . . 3  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlem1.u . . 3  |-  ( ph  ->  U  e.  RR+ )
8 pntlem1.u2 . . 3  |-  ( ph  ->  U  <_  A )
9 pntlem1.e . . 3  |-  E  =  ( U  /  D
)
10 pntlem1.k . . 3  |-  K  =  ( exp `  ( B  /  E ) )
11 pntlem1.y . . 3  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
12 pntlem1.x . . 3  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
13 pntlem1.c . . 3  |-  ( ph  ->  C  e.  RR+ )
14 pntlem1.w . . 3  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlema 25285 . 2  |-  ( ph  ->  W  e.  RR+ )
162adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  A  e.  RR+ )
173adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  B  e.  RR+ )
184adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  L  e.  ( 0 (,) 1
) )
197adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  U  e.  RR+ )
208adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  U  <_  A )
2111adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  ( Y  e.  RR+  /\  1  <_  Y ) )
2212adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  ( X  e.  RR+  /\  Y  < 
X ) )
2313adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  C  e.  RR+ )
24 simpr 477 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  v  e.  ( W [,) +oo )
)
25 eqid 2622 . . . 4  |-  ( ( |_ `  ( ( log `  X )  /  ( log `  K
) ) )  +  1 )  =  ( ( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  1 )
26 eqid 2622 . . . 4  |-  ( |_
`  ( ( ( log `  v )  /  ( log `  K
) )  /  2
) )  =  ( |_ `  ( ( ( log `  v
)  /  ( log `  K ) )  / 
2 ) )
27 pntleme.U . . . . 5  |-  ( ph  ->  A. z  e.  ( Y [,) +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
2827adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  A. z  e.  ( Y [,) +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  U )
291, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 25284 . . . . . . . . 9  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
3029simp2d 1074 . . . . . . . 8  |-  ( ph  ->  K  e.  RR+ )
3130rpxrd 11873 . . . . . . 7  |-  ( ph  ->  K  e.  RR* )
32 pnfxr 10092 . . . . . . . 8  |- +oo  e.  RR*
3332a1i 11 . . . . . . 7  |-  ( ph  -> +oo  e.  RR* )
3430rpred 11872 . . . . . . . 8  |-  ( ph  ->  K  e.  RR )
35 ltpnf 11954 . . . . . . . 8  |-  ( K  e.  RR  ->  K  < +oo )
3634, 35syl 17 . . . . . . 7  |-  ( ph  ->  K  < +oo )
37 lbico1 12228 . . . . . . 7  |-  ( ( K  e.  RR*  /\ +oo  e.  RR*  /\  K  < +oo )  ->  K  e.  ( K [,) +oo ) )
3831, 33, 36, 37syl3anc 1326 . . . . . 6  |-  ( ph  ->  K  e.  ( K [,) +oo ) )
39 pntleme.K . . . . . 6  |-  ( ph  ->  A. k  e.  ( K [,) +oo ) A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
40 oveq1 6657 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
k  x.  y )  =  ( K  x.  y ) )
4140breq2d 4665 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y )  <->  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) ) )
4241anbi2d 740 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  <->  ( y  <  z  /\  ( ( 1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) ) ) )
4342anbi1d 741 . . . . . . . . 9  |-  ( k  =  K  ->  (
( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  <->  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
4443rexbidv 3052 . . . . . . . 8  |-  ( k  =  K  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
4544ralbidv 2986 . . . . . . 7  |-  ( k  =  K  ->  ( A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
4645rspcva 3307 . . . . . 6  |-  ( ( K  e.  ( K [,) +oo )  /\  A. k  e.  ( K [,) +oo ) A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
4738, 39, 46syl2anc 693 . . . . 5  |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( K  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
4847adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( K  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) )
49 pntleme.C . . . . 5  |-  ( ph  ->  A. z  e.  ( 1 (,) +oo )
( ( ( ( abs `  ( R `
 z ) )  x.  ( log `  z
) )  -  (
( 2  /  ( log `  z ) )  x.  sum_ i  e.  ( 1 ... ( |_
`  ( z  /  Y ) ) ) ( ( abs `  ( R `  ( z  /  i ) ) )  x.  ( log `  i ) ) ) )  /  z )  <_  C )
5049adantr 481 . . . 4  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  A. z  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ i  e.  ( 1 ... ( |_ `  ( z  /  Y
) ) ) ( ( abs `  ( R `  ( z  /  i ) ) )  x.  ( log `  i ) ) ) )  /  z )  <_  C )
511, 16, 17, 18, 5, 6, 19, 20, 9, 10, 21, 22, 23, 14, 24, 25, 26, 28, 48, 50pntlemo 25296 . . 3  |-  ( (
ph  /\  v  e.  ( W [,) +oo )
)  ->  ( abs `  ( ( R `  v )  /  v
) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
5251ralrimiva 2966 . 2  |-  ( ph  ->  A. v  e.  ( W [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
53 oveq1 6657 . . . 4  |-  ( w  =  W  ->  (
w [,) +oo )  =  ( W [,) +oo ) )
5453raleqdv 3144 . . 3  |-  ( w  =  W  ->  ( A. v  e.  (
w [,) +oo )
( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) )  <->  A. v  e.  ( W [,) +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) ) )
5554rspcev 3309 . 2  |-  ( ( W  e.  RR+  /\  A. v  e.  ( W [,) +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
5615, 52, 55syl2anc 693 1  |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   3c3 11071   4c4 11072  ;cdc 11493   RR+crp 11832   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   ...cfz 12326   |_cfl 12591   ^cexp 12860   abscabs 13974   sum_csu 14416   expce 14792   logclog 24301  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-em 24719  df-vma 24824  df-chp 24825
This theorem is referenced by:  pntlemp  25299
  Copyright terms: Public domain W3C validator