| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgslem3c | Structured version Visualization version Unicode version | ||
| Description: Lemma for 2lgslem3c1 25127. (Contributed by AV, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n |
|
| Ref | Expression |
|---|---|
| 2lgslem3c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgslem2.n |
. . 3
| |
| 2 | oveq1 6657 |
. . . . 5
| |
| 3 | 2 | oveq1d 6665 |
. . . 4
|
| 4 | oveq1 6657 |
. . . . 5
| |
| 5 | 4 | fveq2d 6195 |
. . . 4
|
| 6 | 3, 5 | oveq12d 6668 |
. . 3
|
| 7 | 1, 6 | syl5eq 2668 |
. 2
|
| 8 | 8nn0 11315 |
. . . . . . . . . . 11
| |
| 9 | 8 | a1i 11 |
. . . . . . . . . 10
|
| 10 | id 22 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | nn0mulcld 11356 |
. . . . . . . . 9
|
| 12 | 11 | nn0cnd 11353 |
. . . . . . . 8
|
| 13 | 5cn 11100 |
. . . . . . . . 9
| |
| 14 | 13 | a1i 11 |
. . . . . . . 8
|
| 15 | 1cnd 10056 |
. . . . . . . 8
| |
| 16 | 12, 14, 15 | addsubassd 10412 |
. . . . . . 7
|
| 17 | 4t2e8 11181 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eqcomi 2631 |
. . . . . . . . . . 11
|
| 19 | 18 | a1i 11 |
. . . . . . . . . 10
|
| 20 | 19 | oveq1d 6665 |
. . . . . . . . 9
|
| 21 | 4cn 11098 |
. . . . . . . . . . 11
| |
| 22 | 21 | a1i 11 |
. . . . . . . . . 10
|
| 23 | 2cn 11091 |
. . . . . . . . . . 11
| |
| 24 | 23 | a1i 11 |
. . . . . . . . . 10
|
| 25 | nn0cn 11302 |
. . . . . . . . . 10
| |
| 26 | 22, 24, 25 | mul32d 10246 |
. . . . . . . . 9
|
| 27 | 20, 26 | eqtrd 2656 |
. . . . . . . 8
|
| 28 | df-5 11082 |
. . . . . . . . . . 11
| |
| 29 | 28 | oveq1i 6660 |
. . . . . . . . . 10
|
| 30 | pncan1 10454 |
. . . . . . . . . . 11
| |
| 31 | 21, 30 | ax-mp 5 |
. . . . . . . . . 10
|
| 32 | 29, 31 | eqtri 2644 |
. . . . . . . . 9
|
| 33 | 32 | a1i 11 |
. . . . . . . 8
|
| 34 | 27, 33 | oveq12d 6668 |
. . . . . . 7
|
| 35 | 16, 34 | eqtrd 2656 |
. . . . . 6
|
| 36 | 35 | oveq1d 6665 |
. . . . 5
|
| 37 | 4nn0 11311 |
. . . . . . . . . 10
| |
| 38 | 37 | a1i 11 |
. . . . . . . . 9
|
| 39 | 38, 10 | nn0mulcld 11356 |
. . . . . . . 8
|
| 40 | 39 | nn0cnd 11353 |
. . . . . . 7
|
| 41 | 40, 24 | mulcld 10060 |
. . . . . 6
|
| 42 | 2rp 11837 |
. . . . . . . 8
| |
| 43 | 42 | a1i 11 |
. . . . . . 7
|
| 44 | 43 | rpcnne0d 11881 |
. . . . . 6
|
| 45 | divdir 10710 |
. . . . . 6
| |
| 46 | 41, 22, 44, 45 | syl3anc 1326 |
. . . . 5
|
| 47 | 2ne0 11113 |
. . . . . . . 8
| |
| 48 | 47 | a1i 11 |
. . . . . . 7
|
| 49 | 40, 24, 48 | divcan4d 10807 |
. . . . . 6
|
| 50 | 4d2e2 11184 |
. . . . . . 7
| |
| 51 | 50 | a1i 11 |
. . . . . 6
|
| 52 | 49, 51 | oveq12d 6668 |
. . . . 5
|
| 53 | 36, 46, 52 | 3eqtrd 2660 |
. . . 4
|
| 54 | 4ne0 11117 |
. . . . . . . . . 10
| |
| 55 | 21, 54 | pm3.2i 471 |
. . . . . . . . 9
|
| 56 | 55 | a1i 11 |
. . . . . . . 8
|
| 57 | divdir 10710 |
. . . . . . . 8
| |
| 58 | 12, 14, 56, 57 | syl3anc 1326 |
. . . . . . 7
|
| 59 | 8cn 11106 |
. . . . . . . . . . 11
| |
| 60 | 59 | a1i 11 |
. . . . . . . . . 10
|
| 61 | div23 10704 |
. . . . . . . . . 10
| |
| 62 | 60, 25, 56, 61 | syl3anc 1326 |
. . . . . . . . 9
|
| 63 | 18 | oveq1i 6660 |
. . . . . . . . . . . 12
|
| 64 | 23, 21, 54 | divcan3i 10771 |
. . . . . . . . . . . 12
|
| 65 | 63, 64 | eqtri 2644 |
. . . . . . . . . . 11
|
| 66 | 65 | a1i 11 |
. . . . . . . . . 10
|
| 67 | 66 | oveq1d 6665 |
. . . . . . . . 9
|
| 68 | 62, 67 | eqtrd 2656 |
. . . . . . . 8
|
| 69 | 68 | oveq1d 6665 |
. . . . . . 7
|
| 70 | 58, 69 | eqtrd 2656 |
. . . . . 6
|
| 71 | 70 | fveq2d 6195 |
. . . . 5
|
| 72 | 1lt4 11199 |
. . . . . 6
| |
| 73 | 2nn0 11309 |
. . . . . . . . . . . 12
| |
| 74 | 73 | a1i 11 |
. . . . . . . . . . 11
|
| 75 | 74, 10 | nn0mulcld 11356 |
. . . . . . . . . 10
|
| 76 | 75 | nn0zd 11480 |
. . . . . . . . 9
|
| 77 | 76 | peano2zd 11485 |
. . . . . . . 8
|
| 78 | 1nn0 11308 |
. . . . . . . . 9
| |
| 79 | 78 | a1i 11 |
. . . . . . . 8
|
| 80 | 4nn 11187 |
. . . . . . . . 9
| |
| 81 | 80 | a1i 11 |
. . . . . . . 8
|
| 82 | adddivflid 12619 |
. . . . . . . 8
| |
| 83 | 77, 79, 81, 82 | syl3anc 1326 |
. . . . . . 7
|
| 84 | 24, 25 | mulcld 10060 |
. . . . . . . . . . 11
|
| 85 | 54 | a1i 11 |
. . . . . . . . . . . 12
|
| 86 | 22, 85 | reccld 10794 |
. . . . . . . . . . 11
|
| 87 | 84, 15, 86 | addassd 10062 |
. . . . . . . . . 10
|
| 88 | 28 | oveq1i 6660 |
. . . . . . . . . . . . . 14
|
| 89 | ax-1cn 9994 |
. . . . . . . . . . . . . . 15
| |
| 90 | 21, 89, 21, 54 | divdiri 10782 |
. . . . . . . . . . . . . 14
|
| 91 | 21, 54 | dividi 10758 |
. . . . . . . . . . . . . . 15
|
| 92 | 91 | oveq1i 6660 |
. . . . . . . . . . . . . 14
|
| 93 | 88, 90, 92 | 3eqtri 2648 |
. . . . . . . . . . . . 13
|
| 94 | 93 | a1i 11 |
. . . . . . . . . . . 12
|
| 95 | 94 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 96 | 95 | oveq2d 6666 |
. . . . . . . . . 10
|
| 97 | 87, 96 | eqtrd 2656 |
. . . . . . . . 9
|
| 98 | 97 | fveq2d 6195 |
. . . . . . . 8
|
| 99 | 98 | eqeq1d 2624 |
. . . . . . 7
|
| 100 | 83, 99 | bitrd 268 |
. . . . . 6
|
| 101 | 72, 100 | mpbii 223 |
. . . . 5
|
| 102 | 71, 101 | eqtrd 2656 |
. . . 4
|
| 103 | 53, 102 | oveq12d 6668 |
. . 3
|
| 104 | 75 | nn0cnd 11353 |
. . . 4
|
| 105 | 40, 24, 104, 15 | addsub4d 10439 |
. . 3
|
| 106 | 2t2e4 11177 |
. . . . . . . . . 10
| |
| 107 | 106 | eqcomi 2631 |
. . . . . . . . 9
|
| 108 | 107 | a1i 11 |
. . . . . . . 8
|
| 109 | 108 | oveq1d 6665 |
. . . . . . 7
|
| 110 | 24, 24, 25 | mulassd 10063 |
. . . . . . 7
|
| 111 | 109, 110 | eqtrd 2656 |
. . . . . 6
|
| 112 | 111 | oveq1d 6665 |
. . . . 5
|
| 113 | 2txmxeqx 11149 |
. . . . . 6
| |
| 114 | 104, 113 | syl 17 |
. . . . 5
|
| 115 | 112, 114 | eqtrd 2656 |
. . . 4
|
| 116 | 2m1e1 11135 |
. . . . 5
| |
| 117 | 116 | a1i 11 |
. . . 4
|
| 118 | 115, 117 | oveq12d 6668 |
. . 3
|
| 119 | 103, 105, 118 | 3eqtrd 2660 |
. 2
|
| 120 | 7, 119 | sylan9eqr 2678 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 |
| This theorem is referenced by: 2lgslem3c1 25127 |
| Copyright terms: Public domain | W3C validator |