MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3c Structured version   Visualization version   Unicode version

Theorem 2lgslem3c 25123
Description: Lemma for 2lgslem3c1 25127. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3c  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  5 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )

Proof of Theorem 2lgslem3c
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 6657 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  5 )  - 
1 ) )
32oveq1d 6665 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  5 )  -  1 )  / 
2 ) )
4 oveq1 6657 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  ( P  /  4 )  =  ( ( ( 8  x.  K )  +  5 )  /  4
) )
54fveq2d 6195 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  5 )  /  4 ) ) )
63, 5oveq12d 6668 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  5 )  /  4 ) ) ) )
71, 6syl5eq 2668 . 2  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  5 )  /  4 ) ) ) )
8 8nn0 11315 . . . . . . . . . . 11  |-  8  e.  NN0
98a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
10 id 22 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
119, 10nn0mulcld 11356 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1211nn0cnd 11353 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
13 5cn 11100 . . . . . . . . 9  |-  5  e.  CC
1413a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  5  e.  CC )
15 1cnd 10056 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1612, 14, 15addsubassd 10412 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  -  1 )  =  ( ( 8  x.  K )  +  ( 5  -  1 ) ) )
17 4t2e8 11181 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1817eqcomi 2631 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1918a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
2019oveq1d 6665 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
21 4cn 11098 . . . . . . . . . . 11  |-  4  e.  CC
2221a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
23 2cn 11091 . . . . . . . . . . 11  |-  2  e.  CC
2423a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
25 nn0cn 11302 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2622, 24, 25mul32d 10246 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2720, 26eqtrd 2656 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
28 df-5 11082 . . . . . . . . . . 11  |-  5  =  ( 4  +  1 )
2928oveq1i 6660 . . . . . . . . . 10  |-  ( 5  -  1 )  =  ( ( 4  +  1 )  -  1 )
30 pncan1 10454 . . . . . . . . . . 11  |-  ( 4  e.  CC  ->  (
( 4  +  1 )  -  1 )  =  4 )
3121, 30ax-mp 5 . . . . . . . . . 10  |-  ( ( 4  +  1 )  -  1 )  =  4
3229, 31eqtri 2644 . . . . . . . . 9  |-  ( 5  -  1 )  =  4
3332a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 5  -  1 )  =  4 )
3427, 33oveq12d 6668 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 5  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  4 ) )
3516, 34eqtrd 2656 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  4 ) )
3635oveq1d 6665 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  4 )  /  2
) )
37 4nn0 11311 . . . . . . . . . 10  |-  4  e.  NN0
3837a1i 11 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3938, 10nn0mulcld 11356 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
4039nn0cnd 11353 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
4140, 24mulcld 10060 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
42 2rp 11837 . . . . . . . 8  |-  2  e.  RR+
4342a1i 11 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
4443rpcnne0d 11881 . . . . . 6  |-  ( K  e.  NN0  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
45 divdir 10710 . . . . . 6  |-  ( ( ( ( 4  x.  K )  x.  2 )  e.  CC  /\  4  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( 4  x.  K
)  x.  2 )  +  4 )  / 
2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  /  2
)  +  ( 4  /  2 ) ) )
4641, 22, 44, 45syl3anc 1326 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  4 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 4  /  2 ) ) )
47 2ne0 11113 . . . . . . . 8  |-  2  =/=  0
4847a1i 11 . . . . . . 7  |-  ( K  e.  NN0  ->  2  =/=  0 )
4940, 24, 48divcan4d 10807 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
50 4d2e2 11184 . . . . . . 7  |-  ( 4  /  2 )  =  2
5150a1i 11 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  /  2 )  =  2 )
5249, 51oveq12d 6668 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 4  / 
2 ) )  =  ( ( 4  x.  K )  +  2 ) )
5336, 46, 523eqtrd 2660 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  2 ) )
54 4ne0 11117 . . . . . . . . . 10  |-  4  =/=  0
5521, 54pm3.2i 471 . . . . . . . . 9  |-  ( 4  e.  CC  /\  4  =/=  0 )
5655a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  e.  CC  /\  4  =/=  0 ) )
57 divdir 10710 . . . . . . . 8  |-  ( ( ( 8  x.  K
)  e.  CC  /\  5  e.  CC  /\  (
4  e.  CC  /\  4  =/=  0 ) )  ->  ( ( ( 8  x.  K )  +  5 )  / 
4 )  =  ( ( ( 8  x.  K )  /  4
)  +  ( 5  /  4 ) ) )
5812, 14, 56, 57syl3anc 1326 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 5  /  4 ) ) )
59 8cn 11106 . . . . . . . . . . 11  |-  8  e.  CC
6059a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
61 div23 10704 . . . . . . . . . 10  |-  ( ( 8  e.  CC  /\  K  e.  CC  /\  (
4  e.  CC  /\  4  =/=  0 ) )  ->  ( ( 8  x.  K )  / 
4 )  =  ( ( 8  /  4
)  x.  K ) )
6260, 25, 56, 61syl3anc 1326 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
6318oveq1i 6660 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
6423, 21, 54divcan3i 10771 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
6563, 64eqtri 2644 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
6665a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
6766oveq1d 6665 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
6862, 67eqtrd 2656 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6968oveq1d 6665 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 5  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
7058, 69eqtrd 2656 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  /  4 )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
7170fveq2d 6195 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  5 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 5  /  4 ) ) ) )
72 1lt4 11199 . . . . . 6  |-  1  <  4
73 2nn0 11309 . . . . . . . . . . . 12  |-  2  e.  NN0
7473a1i 11 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
7574, 10nn0mulcld 11356 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
7675nn0zd 11480 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
7776peano2zd 11485 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  1 )  e.  ZZ )
78 1nn0 11308 . . . . . . . . 9  |-  1  e.  NN0
7978a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e. 
NN0 )
80 4nn 11187 . . . . . . . . 9  |-  4  e.  NN
8180a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  e.  NN )
82 adddivflid 12619 . . . . . . . 8  |-  ( ( ( ( 2  x.  K )  +  1 )  e.  ZZ  /\  1  e.  NN0  /\  4  e.  NN )  ->  (
1  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 1  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8377, 79, 81, 82syl3anc 1326 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 1  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 1  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8424, 25mulcld 10060 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
8554a1i 11 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  4  =/=  0 )
8622, 85reccld 10794 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 1  /  4 )  e.  CC )
8784, 15, 86addassd 10062 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 1  +  ( 1  /  4 ) ) ) )
8828oveq1i 6660 . . . . . . . . . . . . . 14  |-  ( 5  /  4 )  =  ( ( 4  +  1 )  /  4
)
89 ax-1cn 9994 . . . . . . . . . . . . . . 15  |-  1  e.  CC
9021, 89, 21, 54divdiri 10782 . . . . . . . . . . . . . 14  |-  ( ( 4  +  1 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 1  /  4 ) )
9121, 54dividi 10758 . . . . . . . . . . . . . . 15  |-  ( 4  /  4 )  =  1
9291oveq1i 6660 . . . . . . . . . . . . . 14  |-  ( ( 4  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  +  ( 1  /  4 ) )
9388, 90, 923eqtri 2648 . . . . . . . . . . . . 13  |-  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) )
9493a1i 11 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) ) )
9594eqcomd 2628 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 1  +  ( 1  / 
4 ) )  =  ( 5  /  4
) )
9695oveq2d 6666 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  ( 1  +  ( 1  /  4
) ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
9787, 96eqtrd 2656 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
9897fveq2d 6195 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 2  x.  K )  +  1 )  +  ( 1  /  4
) ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 5  /  4 ) ) ) )
9998eqeq1d 2624 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( |_ `  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) ) )  =  ( ( 2  x.  K )  +  1 )  <->  ( |_ `  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
10083, 99bitrd 268 . . . . . 6  |-  ( K  e.  NN0  ->  ( 1  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
10172, 100mpbii 223 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 5  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
10271, 101eqtrd 2656 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  5 )  / 
4 ) )  =  ( ( 2  x.  K )  +  1 ) )
10353, 102oveq12d 6668 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  5 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  2 )  -  (
( 2  x.  K
)  +  1 ) ) )
10475nn0cnd 11353 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
10540, 24, 104, 15addsub4d 10439 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  2 )  -  ( ( 2  x.  K )  +  1 ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  ( 2  -  1 ) ) )
106 2t2e4 11177 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
107106eqcomi 2631 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
108107a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
109108oveq1d 6665 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
11024, 24, 25mulassd 10063 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
111109, 110eqtrd 2656 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
112111oveq1d 6665 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
113 2txmxeqx 11149 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
114104, 113syl 17 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
115112, 114eqtrd 2656 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
116 2m1e1 11135 . . . . 5  |-  ( 2  -  1 )  =  1
117116a1i 11 . . . 4  |-  ( K  e.  NN0  ->  ( 2  -  1 )  =  1 )
118115, 117oveq12d 6668 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  ( 2  -  1 ) )  =  ( ( 2  x.  K )  +  1 ) )
119103, 105, 1183eqtrd 2660 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  5 )  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
1207, 119sylan9eqr 2678 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  5 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   5c5 11073   8c8 11076   NN0cn0 11292   ZZcz 11377   RR+crp 11832   |_cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593
This theorem is referenced by:  2lgslem3c1  25127
  Copyright terms: Public domain W3C validator