MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3d Structured version   Visualization version   Unicode version

Theorem 2lgslem3d 25124
Description: Lemma for 2lgslem3d1 25128. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3d  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  7 ) )  ->  N  =  ( ( 2  x.  K
)  +  2 ) )

Proof of Theorem 2lgslem3d
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 6657 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  7 )  - 
1 ) )
32oveq1d 6665 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  7 )  -  1 )  / 
2 ) )
4 oveq1 6657 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( P  /  4 )  =  ( ( ( 8  x.  K )  +  7 )  /  4
) )
54fveq2d 6195 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  7 )  /  4 ) ) )
63, 5oveq12d 6668 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  7 )  /  4 ) ) ) )
71, 6syl5eq 2668 . 2  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  7 )  /  4 ) ) ) )
8 8nn0 11315 . . . . . . . . . . 11  |-  8  e.  NN0
98a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
10 id 22 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
119, 10nn0mulcld 11356 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1211nn0cnd 11353 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
13 7cn 11104 . . . . . . . . 9  |-  7  e.  CC
1413a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  7  e.  CC )
15 1cnd 10056 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1612, 14, 15addsubassd 10412 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  -  1 )  =  ( ( 8  x.  K )  +  ( 7  -  1 ) ) )
17 4t2e8 11181 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1817eqcomi 2631 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1918a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
2019oveq1d 6665 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
21 4cn 11098 . . . . . . . . . . 11  |-  4  e.  CC
2221a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
23 2cn 11091 . . . . . . . . . . 11  |-  2  e.  CC
2423a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
25 nn0cn 11302 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2622, 24, 25mul32d 10246 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2720, 26eqtrd 2656 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
28 df-7 11084 . . . . . . . . . . 11  |-  7  =  ( 6  +  1 )
2928oveq1i 6660 . . . . . . . . . 10  |-  ( 7  -  1 )  =  ( ( 6  +  1 )  -  1 )
30 6cn 11102 . . . . . . . . . . 11  |-  6  e.  CC
31 pncan1 10454 . . . . . . . . . . 11  |-  ( 6  e.  CC  ->  (
( 6  +  1 )  -  1 )  =  6 )
3230, 31ax-mp 5 . . . . . . . . . 10  |-  ( ( 6  +  1 )  -  1 )  =  6
3329, 32eqtri 2644 . . . . . . . . 9  |-  ( 7  -  1 )  =  6
3433a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 7  -  1 )  =  6 )
3527, 34oveq12d 6668 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 7  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  6 ) )
3616, 35eqtrd 2656 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  6 ) )
3736oveq1d 6665 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  6 )  /  2
) )
38 4nn0 11311 . . . . . . . . . 10  |-  4  e.  NN0
3938a1i 11 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
4039, 10nn0mulcld 11356 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
4140nn0cnd 11353 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
4241, 24mulcld 10060 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
4330a1i 11 . . . . . 6  |-  ( K  e.  NN0  ->  6  e.  CC )
44 2rp 11837 . . . . . . . 8  |-  2  e.  RR+
4544a1i 11 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
4645rpcnne0d 11881 . . . . . 6  |-  ( K  e.  NN0  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
47 divdir 10710 . . . . . 6  |-  ( ( ( ( 4  x.  K )  x.  2 )  e.  CC  /\  6  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( 4  x.  K
)  x.  2 )  +  6 )  / 
2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  /  2
)  +  ( 6  /  2 ) ) )
4842, 43, 46, 47syl3anc 1326 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  6 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 6  /  2 ) ) )
49 2ne0 11113 . . . . . . . 8  |-  2  =/=  0
5049a1i 11 . . . . . . 7  |-  ( K  e.  NN0  ->  2  =/=  0 )
5141, 24, 50divcan4d 10807 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
52 3t2e6 11179 . . . . . . . . . 10  |-  ( 3  x.  2 )  =  6
5352eqcomi 2631 . . . . . . . . 9  |-  6  =  ( 3  x.  2 )
5453oveq1i 6660 . . . . . . . 8  |-  ( 6  /  2 )  =  ( ( 3  x.  2 )  /  2
)
55 3cn 11095 . . . . . . . . 9  |-  3  e.  CC
5655, 23, 49divcan4i 10772 . . . . . . . 8  |-  ( ( 3  x.  2 )  /  2 )  =  3
5754, 56eqtri 2644 . . . . . . 7  |-  ( 6  /  2 )  =  3
5857a1i 11 . . . . . 6  |-  ( K  e.  NN0  ->  ( 6  /  2 )  =  3 )
5951, 58oveq12d 6668 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 6  / 
2 ) )  =  ( ( 4  x.  K )  +  3 ) )
6037, 48, 593eqtrd 2660 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  3 ) )
61 4ne0 11117 . . . . . . . . . 10  |-  4  =/=  0
6221, 61pm3.2i 471 . . . . . . . . 9  |-  ( 4  e.  CC  /\  4  =/=  0 )
6362a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  e.  CC  /\  4  =/=  0 ) )
64 divdir 10710 . . . . . . . 8  |-  ( ( ( 8  x.  K
)  e.  CC  /\  7  e.  CC  /\  (
4  e.  CC  /\  4  =/=  0 ) )  ->  ( ( ( 8  x.  K )  +  7 )  / 
4 )  =  ( ( ( 8  x.  K )  /  4
)  +  ( 7  /  4 ) ) )
6512, 14, 63, 64syl3anc 1326 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 7  /  4 ) ) )
66 8cn 11106 . . . . . . . . . . 11  |-  8  e.  CC
6766a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
68 div23 10704 . . . . . . . . . 10  |-  ( ( 8  e.  CC  /\  K  e.  CC  /\  (
4  e.  CC  /\  4  =/=  0 ) )  ->  ( ( 8  x.  K )  / 
4 )  =  ( ( 8  /  4
)  x.  K ) )
6967, 25, 63, 68syl3anc 1326 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
7018oveq1i 6660 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
7123, 21, 61divcan3i 10771 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
7270, 71eqtri 2644 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
7372a1i 11 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
7473oveq1d 6665 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
7569, 74eqtrd 2656 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
7675oveq1d 6665 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 7  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
7765, 76eqtrd 2656 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  /  4 )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
7877fveq2d 6195 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  7 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 7  /  4 ) ) ) )
79 3lt4 11197 . . . . . 6  |-  3  <  4
80 2nn0 11309 . . . . . . . . . . . 12  |-  2  e.  NN0
8180a1i 11 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
8281, 10nn0mulcld 11356 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
8382nn0zd 11480 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
8483peano2zd 11485 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  1 )  e.  ZZ )
85 3nn0 11310 . . . . . . . . 9  |-  3  e.  NN0
8685a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
87 4nn 11187 . . . . . . . . 9  |-  4  e.  NN
8887a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  e.  NN )
89 adddivflid 12619 . . . . . . . 8  |-  ( ( ( ( 2  x.  K )  +  1 )  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
9084, 86, 88, 89syl3anc 1326 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
9124, 25mulcld 10060 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
9255a1i 11 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  3  e.  CC )
9361a1i 11 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  4  =/=  0 )
9492, 22, 93divcld 10801 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 3  /  4 )  e.  CC )
9591, 15, 94addassd 10062 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 1  +  ( 3  /  4 ) ) ) )
96 4p3e7 11163 . . . . . . . . . . . . . . . 16  |-  ( 4  +  3 )  =  7
9796eqcomi 2631 . . . . . . . . . . . . . . 15  |-  7  =  ( 4  +  3 )
9897oveq1i 6660 . . . . . . . . . . . . . 14  |-  ( 7  /  4 )  =  ( ( 4  +  3 )  /  4
)
9921, 55, 21, 61divdiri 10782 . . . . . . . . . . . . . 14  |-  ( ( 4  +  3 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 3  /  4 ) )
10021, 61dividi 10758 . . . . . . . . . . . . . . 15  |-  ( 4  /  4 )  =  1
101100oveq1i 6660 . . . . . . . . . . . . . 14  |-  ( ( 4  /  4 )  +  ( 3  / 
4 ) )  =  ( 1  +  ( 3  /  4 ) )
10298, 99, 1013eqtri 2648 . . . . . . . . . . . . 13  |-  ( 7  /  4 )  =  ( 1  +  ( 3  /  4 ) )
103102a1i 11 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  ( 7  /  4 )  =  ( 1  +  ( 3  /  4 ) ) )
104103eqcomd 2628 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 1  +  ( 3  / 
4 ) )  =  ( 7  /  4
) )
105104oveq2d 6666 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  ( 1  +  ( 3  /  4
) ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
10695, 105eqtrd 2656 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
107106fveq2d 6195 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4
) ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 7  /  4 ) ) ) )
108107eqeq1d 2624 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( |_ `  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) ) )  =  ( ( 2  x.  K )  +  1 )  <->  ( |_ `  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
10990, 108bitrd 268 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
11079, 109mpbii 223 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 7  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
11178, 110eqtrd 2656 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  7 )  / 
4 ) )  =  ( ( 2  x.  K )  +  1 ) )
11260, 111oveq12d 6668 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  7 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  3 )  -  (
( 2  x.  K
)  +  1 ) ) )
11382nn0cnd 11353 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
11441, 92, 113, 15addsub4d 10439 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  3 )  -  ( ( 2  x.  K )  +  1 ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  ( 3  -  1 ) ) )
115 2t2e4 11177 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
116115eqcomi 2631 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
117116a1i 11 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
118117oveq1d 6665 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
11924, 24, 25mulassd 10063 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
120118, 119eqtrd 2656 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
121120oveq1d 6665 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
122 2txmxeqx 11149 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
123113, 122syl 17 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
124121, 123eqtrd 2656 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
125 3m1e2 11137 . . . . 5  |-  ( 3  -  1 )  =  2
126125a1i 11 . . . 4  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
127124, 126oveq12d 6668 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  ( 3  -  1 ) )  =  ( ( 2  x.  K )  +  2 ) )
128112, 114, 1273eqtrd 2660 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  7 )  /  4
) ) )  =  ( ( 2  x.  K )  +  2 ) )
1297, 128sylan9eqr 2678 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  7 ) )  ->  N  =  ( ( 2  x.  K
)  +  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   6c6 11074   7c7 11075   8c8 11076   NN0cn0 11292   ZZcz 11377   RR+crp 11832   |_cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593
This theorem is referenced by:  2lgslem3d1  25128
  Copyright terms: Public domain W3C validator