Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodory Structured version   Visualization version   Unicode version

Theorem caratheodory 40742
Description: Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodory.o  |-  ( ph  ->  O  e. OutMeas )
caratheodory.s  |-  S  =  (CaraGen `  O )
Assertion
Ref Expression
caratheodory  |-  ( ph  ->  ( O  |`  S )  e. Meas )

Proof of Theorem caratheodory
Dummy variables  a 
e  j  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caratheodory.o . . 3  |-  ( ph  ->  O  e. OutMeas )
2 caratheodory.s . . 3  |-  S  =  (CaraGen `  O )
31, 2caragensal 40739 . 2  |-  ( ph  ->  S  e. SAlg )
4 eqid 2622 . . . 4  |-  U. dom  O  =  U. dom  O
51, 4omef 40710 . . 3  |-  ( ph  ->  O : ~P U. dom  O --> ( 0 [,] +oo ) )
6 caragenval 40707 . . . . . . 7  |-  ( O  e. OutMeas  ->  (CaraGen `  O )  =  { e  e.  ~P U.
dom  O  |  A. a  e.  ~P  U. dom  O ( ( O `  ( a  i^i  e
) ) +e
( O `  (
a  \  e )
) )  =  ( O `  a ) } )
71, 6syl 17 . . . . . 6  |-  ( ph  ->  (CaraGen `  O )  =  { e  e.  ~P U.
dom  O  |  A. a  e.  ~P  U. dom  O ( ( O `  ( a  i^i  e
) ) +e
( O `  (
a  \  e )
) )  =  ( O `  a ) } )
87eqcomd 2628 . . . . 5  |-  ( ph  ->  { e  e.  ~P U.
dom  O  |  A. a  e.  ~P  U. dom  O ( ( O `  ( a  i^i  e
) ) +e
( O `  (
a  \  e )
) )  =  ( O `  a ) }  =  (CaraGen `  O
) )
92eqcomi 2631 . . . . . 6  |-  (CaraGen `  O
)  =  S
109a1i 11 . . . . 5  |-  ( ph  ->  (CaraGen `  O )  =  S )
118, 10eqtr2d 2657 . . . 4  |-  ( ph  ->  S  =  { e  e.  ~P U. dom  O  |  A. a  e. 
~P  U. dom  O ( ( O `  (
a  i^i  e )
) +e ( O `  ( a 
\  e ) ) )  =  ( O `
 a ) } )
12 ssrab2 3687 . . . 4  |-  { e  e.  ~P U. dom  O  |  A. a  e. 
~P  U. dom  O ( ( O `  (
a  i^i  e )
) +e ( O `  ( a 
\  e ) ) )  =  ( O `
 a ) } 
C_  ~P U. dom  O
1311, 12syl6eqss 3655 . . 3  |-  ( ph  ->  S  C_  ~P U. dom  O )
145, 13fssresd 6071 . 2  |-  ( ph  ->  ( O  |`  S ) : S --> ( 0 [,] +oo ) )
151, 2caragen0 40720 . . . 4  |-  ( ph  -> 
(/)  e.  S )
16 fvres 6207 . . . 4  |-  ( (/)  e.  S  ->  ( ( O  |`  S ) `  (/) )  =  ( O `  (/) ) )
1715, 16syl 17 . . 3  |-  ( ph  ->  ( ( O  |`  S ) `  (/) )  =  ( O `  (/) ) )
181ome0 40711 . . 3  |-  ( ph  ->  ( O `  (/) )  =  0 )
1917, 18eqtrd 2656 . 2  |-  ( ph  ->  ( ( O  |`  S ) `  (/) )  =  0 )
20 simp1 1061 . . . 4  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  n  e.  NN  ( e `  n
) )  ->  ph )
21 simp2 1062 . . . 4  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  n  e.  NN  ( e `  n
) )  ->  e : NN --> S )
22 fveq2 6191 . . . . . . 7  |-  ( n  =  m  ->  (
e `  n )  =  ( e `  m ) )
2322cbvdisjv 4631 . . . . . 6  |-  (Disj  n  e.  NN  ( e `  n )  <-> Disj  m  e.  NN  ( e `  m
) )
2423biimpi 206 . . . . 5  |-  (Disj  n  e.  NN  ( e `  n )  -> Disj  m  e.  NN  ( e `  m ) )
25243ad2ant3 1084 . . . 4  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  n  e.  NN  ( e `  n
) )  -> Disj  m  e.  NN  ( e `  m ) )
2613ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  m  e.  NN  ( e `  m
) )  ->  O  e. OutMeas )
27 simp2 1062 . . . . 5  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  m  e.  NN  ( e `  m
) )  ->  e : NN --> S )
2823biimpri 218 . . . . . 6  |-  (Disj  m  e.  NN  ( e `  m )  -> Disj  n  e.  NN  ( e `  n ) )
29283ad2ant3 1084 . . . . 5  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  m  e.  NN  ( e `  m
) )  -> Disj  n  e.  NN  ( e `  n ) )
30 fveq2 6191 . . . . . . 7  |-  ( m  =  n  ->  (
e `  m )  =  ( e `  n ) )
3130cbviunv 4559 . . . . . 6  |-  U_ m  e.  ( 1 ... j
) ( e `  m )  =  U_ n  e.  ( 1 ... j ) ( e `  n )
3231mpteq2i 4741 . . . . 5  |-  ( j  e.  NN  |->  U_ m  e.  ( 1 ... j
) ( e `  m ) )  =  ( j  e.  NN  |->  U_ n  e.  ( 1 ... j ) ( e `  n ) )
3326, 4, 2, 27, 29, 32caratheodorylem2 40741 . . . 4  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  m  e.  NN  ( e `  m
) )  ->  ( O `  U_ n  e.  NN  ( e `  n ) )  =  (Σ^ `  ( n  e.  NN  |->  ( O `  ( e `
 n ) ) ) ) )
3420, 21, 25, 33syl3anc 1326 . . 3  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  n  e.  NN  ( e `  n
) )  ->  ( O `  U_ n  e.  NN  ( e `  n ) )  =  (Σ^ `  ( n  e.  NN  |->  ( O `  ( e `
 n ) ) ) ) )
353adantr 481 . . . . . 6  |-  ( (
ph  /\  e : NN
--> S )  ->  S  e. SAlg )
36 nnenom 12779 . . . . . . . 8  |-  NN  ~~  om
37 endom 7982 . . . . . . . 8  |-  ( NN 
~~  om  ->  NN  ~<_  om )
3836, 37ax-mp 5 . . . . . . 7  |-  NN  ~<_  om
3938a1i 11 . . . . . 6  |-  ( (
ph  /\  e : NN
--> S )  ->  NN  ~<_  om )
40 ffvelrn 6357 . . . . . . 7  |-  ( ( e : NN --> S  /\  n  e.  NN )  ->  ( e `  n
)  e.  S )
4140adantll 750 . . . . . 6  |-  ( ( ( ph  /\  e : NN --> S )  /\  n  e.  NN )  ->  ( e `  n
)  e.  S )
4235, 39, 41saliuncl 40542 . . . . 5  |-  ( (
ph  /\  e : NN
--> S )  ->  U_ n  e.  NN  ( e `  n )  e.  S
)
43 fvres 6207 . . . . 5  |-  ( U_ n  e.  NN  (
e `  n )  e.  S  ->  ( ( O  |`  S ) `  U_ n  e.  NN  ( e `  n
) )  =  ( O `  U_ n  e.  NN  ( e `  n ) ) )
4442, 43syl 17 . . . 4  |-  ( (
ph  /\  e : NN
--> S )  ->  (
( O  |`  S ) `
 U_ n  e.  NN  ( e `  n
) )  =  ( O `  U_ n  e.  NN  ( e `  n ) ) )
45443adant3 1081 . . 3  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  n  e.  NN  ( e `  n
) )  ->  (
( O  |`  S ) `
 U_ n  e.  NN  ( e `  n
) )  =  ( O `  U_ n  e.  NN  ( e `  n ) ) )
46 fvres 6207 . . . . . . 7  |-  ( ( e `  n )  e.  S  ->  (
( O  |`  S ) `
 ( e `  n ) )  =  ( O `  (
e `  n )
) )
4741, 46syl 17 . . . . . 6  |-  ( ( ( ph  /\  e : NN --> S )  /\  n  e.  NN )  ->  ( ( O  |`  S ) `  (
e `  n )
)  =  ( O `
 ( e `  n ) ) )
4847mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  e : NN
--> S )  ->  (
n  e.  NN  |->  ( ( O  |`  S ) `
 ( e `  n ) ) )  =  ( n  e.  NN  |->  ( O `  ( e `  n
) ) ) )
4948fveq2d 6195 . . . 4  |-  ( (
ph  /\  e : NN
--> S )  ->  (Σ^ `  (
n  e.  NN  |->  ( ( O  |`  S ) `
 ( e `  n ) ) ) )  =  (Σ^ `  ( n  e.  NN  |->  ( O `  ( e `
 n ) ) ) ) )
50493adant3 1081 . . 3  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  n  e.  NN  ( e `  n
) )  ->  (Σ^ `  (
n  e.  NN  |->  ( ( O  |`  S ) `
 ( e `  n ) ) ) )  =  (Σ^ `  ( n  e.  NN  |->  ( O `  ( e `
 n ) ) ) ) )
5134, 45, 503eqtr4d 2666 . 2  |-  ( (
ph  /\  e : NN
--> S  /\ Disj  n  e.  NN  ( e `  n
) )  ->  (
( O  |`  S ) `
 U_ n  e.  NN  ( e `  n
) )  =  (Σ^ `  (
n  e.  NN  |->  ( ( O  |`  S ) `
 ( e `  n ) ) ) ) )
523, 14, 19, 51ismeannd 40684 1  |-  ( ph  ->  ( O  |`  S )  e. Meas )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   0cc0 9936   1c1 9937   +oocpnf 10071   NNcn 11020   +ecxad 11944   [,]cicc 12178   ...cfz 12326  SAlgcsalg 40528  Σ^csumge0 40579  Meascmea 40666  OutMeascome 40703  CaraGenccaragen 40705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-salg 40529  df-sumge0 40580  df-mea 40667  df-ome 40704  df-caragen 40706
This theorem is referenced by:  vonmea  40788
  Copyright terms: Public domain W3C validator