MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrfi Structured version   Visualization version   Unicode version

Theorem dchrfi 24980
Description: The group of Dirichlet characters is a finite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrabl.g  |-  G  =  (DChr `  N )
dchrfi.b  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrfi  |-  ( N  e.  NN  ->  D  e.  Fin )

Proof of Theorem dchrfi
Dummy variables  x  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8038 . . . 4  |-  { 0 }  e.  Fin
2 cnex 10017 . . . . . . . . 9  |-  CC  e.  _V
32a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  CC  e.  _V )
4 ovexd 6680 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  CC )  ->  ( z ^ ( phi `  N ) )  e.  _V )
5 1cnd 10056 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  CC )  ->  1  e.  CC )
6 eqidd 2623 . . . . . . . 8  |-  ( N  e.  NN  ->  (
z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  =  ( z  e.  CC  |->  ( z ^
( phi `  N
) ) ) )
7 fconstmpt 5163 . . . . . . . . 9  |-  ( CC 
X.  { 1 } )  =  ( z  e.  CC  |->  1 )
87a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  ( CC  X.  { 1 } )  =  ( z  e.  CC  |->  1 ) )
93, 4, 5, 6, 8offval2 6914 . . . . . . 7  |-  ( N  e.  NN  ->  (
( z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  oF  -  ( CC  X.  { 1 } ) )  =  ( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) )
10 ssid 3624 . . . . . . . . . 10  |-  CC  C_  CC
1110a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  CC  C_  CC )
12 1cnd 10056 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  e.  CC )
13 phicl 15474 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
1413nnnn0d 11351 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( phi `  N )  e. 
NN0 )
15 plypow 23961 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  1  e.  CC  /\  ( phi `  N )  e.  NN0 )  ->  ( z  e.  CC  |->  ( z ^
( phi `  N
) ) )  e.  (Poly `  CC )
)
1611, 12, 14, 15syl3anc 1326 . . . . . . . 8  |-  ( N  e.  NN  ->  (
z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  e.  (Poly `  CC ) )
17 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
18 plyconst 23962 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  1  e.  CC )  ->  ( CC  X.  { 1 } )  e.  (Poly `  CC ) )
1910, 17, 18mp2an 708 . . . . . . . 8  |-  ( CC 
X.  { 1 } )  e.  (Poly `  CC )
20 plysubcl 23978 . . . . . . . 8  |-  ( ( ( z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  e.  (Poly `  CC )  /\  ( CC  X.  { 1 } )  e.  (Poly `  CC ) )  ->  (
( z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  oF  -  ( CC  X.  { 1 } ) )  e.  (Poly `  CC )
)
2116, 19, 20sylancl 694 . . . . . . 7  |-  ( N  e.  NN  ->  (
( z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  oF  -  ( CC  X.  { 1 } ) )  e.  (Poly `  CC )
)
229, 21eqeltrrd 2702 . . . . . 6  |-  ( N  e.  NN  ->  (
z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) )  e.  (Poly `  CC ) )
23 0cn 10032 . . . . . . 7  |-  0  e.  CC
24 neg1ne0 11126 . . . . . . . 8  |-  -u 1  =/=  0
25130expd 13024 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
0 ^ ( phi `  N ) )  =  0 )
2625oveq1d 6665 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 0 ^ ( phi `  N ) )  -  1 )  =  ( 0  -  1 ) )
27 oveq1 6657 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z ^ ( phi `  N ) )  =  ( 0 ^ ( phi `  N ) ) )
2827oveq1d 6665 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
( z ^ ( phi `  N ) )  -  1 )  =  ( ( 0 ^ ( phi `  N
) )  -  1 ) )
29 eqid 2622 . . . . . . . . . . . 12  |-  ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) )  =  ( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) )
30 ovex 6678 . . . . . . . . . . . 12  |-  ( ( 0 ^ ( phi `  N ) )  - 
1 )  e.  _V
3128, 29, 30fvmpt 6282 . . . . . . . . . . 11  |-  ( 0  e.  CC  ->  (
( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) `  0
)  =  ( ( 0 ^ ( phi `  N ) )  - 
1 ) )
3223, 31ax-mp 5 . . . . . . . . . 10  |-  ( ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) ) `
 0 )  =  ( ( 0 ^ ( phi `  N
) )  -  1 )
33 df-neg 10269 . . . . . . . . . 10  |-  -u 1  =  ( 0  -  1 )
3426, 32, 333eqtr4g 2681 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) `  0
)  =  -u 1
)
3534neeq1d 2853 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) ` 
0 )  =/=  0  <->  -u 1  =/=  0 ) )
3624, 35mpbiri 248 . . . . . . 7  |-  ( N  e.  NN  ->  (
( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) `  0
)  =/=  0 )
37 ne0p 23963 . . . . . . 7  |-  ( ( 0  e.  CC  /\  ( ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) ` 
0 )  =/=  0
)  ->  ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) )  =/=  0p )
3823, 36, 37sylancr 695 . . . . . 6  |-  ( N  e.  NN  ->  (
z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) )  =/=  0p )
3929mptiniseg 5629 . . . . . . . . 9  |-  ( 0  e.  CC  ->  ( `' ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) " { 0 } )  =  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )
4023, 39ax-mp 5 . . . . . . . 8  |-  ( `' ( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) " {
0 } )  =  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 }
4140eqcomi 2631 . . . . . . 7  |-  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 }  =  ( `' ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) " { 0 } )
4241fta1 24063 . . . . . 6  |-  ( ( ( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) )  e.  (Poly `  CC )  /\  (
z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) )  =/=  0p )  ->  ( { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 }  e.  Fin  /\  ( # `  {
z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  <_  (deg `  (
z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) ) ) ) )
4322, 38, 42syl2anc 693 . . . . 5  |-  ( N  e.  NN  ->  ( { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 }  e.  Fin  /\  ( # `  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  <_ 
(deg `  ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) ) ) )
4443simpld 475 . . . 4  |-  ( N  e.  NN  ->  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 }  e.  Fin )
45 unfi 8227 . . . 4  |-  ( ( { 0 }  e.  Fin  /\  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 }  e.  Fin )  ->  ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )  e.  Fin )
461, 44, 45sylancr 695 . . 3  |-  ( N  e.  NN  ->  ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  e.  Fin )
47 eqid 2622 . . . 4  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
48 eqid 2622 . . . 4  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
4947, 48znfi 19908 . . 3  |-  ( N  e.  NN  ->  ( Base `  (ℤ/n `  N ) )  e. 
Fin )
50 mapfi 8262 . . 3  |-  ( ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )  e.  Fin  /\  ( Base `  (ℤ/n `  N
) )  e.  Fin )  ->  ( ( { 0 }  u.  {
z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  e.  Fin )
5146, 49, 50syl2anc 693 . 2  |-  ( N  e.  NN  ->  (
( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  e.  Fin )
52 dchrabl.g . . . . . . . 8  |-  G  =  (DChr `  N )
53 dchrfi.b . . . . . . . 8  |-  D  =  ( Base `  G
)
54 simpr 477 . . . . . . . 8  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  f  e.  D )
5552, 47, 53, 48, 54dchrf 24967 . . . . . . 7  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  f : ( Base `  (ℤ/n `  N ) ) --> CC )
56 ffn 6045 . . . . . . 7  |-  ( f : ( Base `  (ℤ/n `  N
) ) --> CC  ->  f  Fn  ( Base `  (ℤ/n `  N
) ) )
5755, 56syl 17 . . . . . 6  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  f  Fn  ( Base `  (ℤ/n `  N ) ) )
58 df-ne 2795 . . . . . . . . . . 11  |-  ( ( f `  x )  =/=  0  <->  -.  (
f `  x )  =  0 )
59 fvex 6201 . . . . . . . . . . . 12  |-  ( f `
 x )  e. 
_V
6059elsn 4192 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  { 0 }  <-> 
( f `  x
)  =  0 )
6158, 60xchbinxr 325 . . . . . . . . . 10  |-  ( ( f `  x )  =/=  0  <->  -.  (
f `  x )  e.  { 0 } )
62 simpl 473 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( Base `  (ℤ/n `  N ) )  /\  ( f `  x
)  =/=  0 )  ->  x  e.  (
Base `  (ℤ/n `  N ) ) )
63 ffvelrn 6357 . . . . . . . . . . . . 13  |-  ( ( f : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( f `  x )  e.  CC )
6455, 62, 63syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  x
)  e.  CC )
6552, 47, 53dchrmhm 24966 . . . . . . . . . . . . . . . . . 18  |-  D  C_  ( (mulGrp `  (ℤ/n `  N ) ) MndHom  (mulGrp ` fld ) )
66 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
f  e.  D )
6765, 66sseldi 3601 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
f  e.  ( (mulGrp `  (ℤ/n `  N ) ) MndHom  (mulGrp ` fld ) ) )
6814ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( phi `  N
)  e.  NN0 )
69 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  ->  x  e.  ( Base `  (ℤ/n `  N ) ) )
70 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  (mulGrp `  (ℤ/n `  N ) )  =  (mulGrp `  (ℤ/n `  N ) )
7170, 48mgpbas 18495 . . . . . . . . . . . . . . . . . 18  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (mulGrp `  (ℤ/n `  N ) ) )
72 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (.g `  (mulGrp `  (ℤ/n `  N ) ) )  =  (.g `  (mulGrp `  (ℤ/n `  N
) ) )
73 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
7471, 72, 73mhmmulg 17583 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  ( (mulGrp `  (ℤ/n `  N ) ) MndHom  (mulGrp ` fld ) )  /\  ( phi `  N )  e.  NN0  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( f `  ( ( phi `  N ) (.g `  (mulGrp `  (ℤ/n `  N ) ) ) x ) )  =  ( ( phi `  N ) (.g `  (mulGrp ` fld ) ) ( f `  x ) ) )
7567, 68, 69, 74syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  (
( phi `  N
) (.g `  (mulGrp `  (ℤ/n `  N
) ) ) x ) )  =  ( ( phi `  N
) (.g `  (mulGrp ` fld ) ) ( f `
 x ) ) )
76 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  N  e.  NN0 )
7747zncrng 19893 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  e.  CRing )
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  (ℤ/n `  N
)  e.  CRing )
79 crngring 18558 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (ℤ/n `  N )  e.  CRing  -> 
(ℤ/n `  N )  e.  Ring )
8078, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  (ℤ/n `  N
)  e.  Ring )
8180ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
(ℤ/n `  N )  e.  Ring )
82 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (Unit `  (ℤ/n `  N ) )  =  (Unit `  (ℤ/n `  N ) )
83 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) )  =  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) )
8482, 83unitgrp 18667 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (ℤ/n `  N )  e.  Ring  -> 
( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) )  e.  Grp )
8581, 84syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) )  e.  Grp )
8647, 82znunithash 19913 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  ( # `
 (Unit `  (ℤ/n `  N
) ) )  =  ( phi `  N
) )
8786, 14eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  ( # `
 (Unit `  (ℤ/n `  N
) ) )  e. 
NN0 )
88 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (Unit `  (ℤ/n `  N ) )  e. 
_V
89 hashclb 13149 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (Unit `  (ℤ/n `  N ) )  e. 
_V  ->  ( (Unit `  (ℤ/n `  N ) )  e. 
Fin 
<->  ( # `  (Unit `  (ℤ/n `  N ) ) )  e.  NN0 ) )
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (Unit `  (ℤ/n `  N ) )  e. 
Fin 
<->  ( # `  (Unit `  (ℤ/n `  N ) ) )  e.  NN0 )
9187, 90sylibr 224 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  ->  (Unit `  (ℤ/n `  N ) )  e. 
Fin )
9291ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
(Unit `  (ℤ/n `  N ) )  e. 
Fin )
93 simprr 796 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  x
)  =/=  0 )
9452, 47, 53, 48, 82, 66, 69dchrn0 24975 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( f `  x )  =/=  0  <->  x  e.  (Unit `  (ℤ/n `  N
) ) ) )
9593, 94mpbid 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  ->  x  e.  (Unit `  (ℤ/n `  N
) ) )
9682, 83unitgrpbas 18666 . . . . . . . . . . . . . . . . . . . . . 22  |-  (Unit `  (ℤ/n `  N ) )  =  ( Base `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )
97 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )  =  ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )
9896, 97oddvds2 17983 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) )  e.  Grp  /\  (Unit `  (ℤ/n `  N ) )  e. 
Fin  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( # `  (Unit `  (ℤ/n `  N ) ) ) )
9985, 92, 95, 98syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( od `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( # `  (Unit `  (ℤ/n `  N ) ) ) )
10086ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( # `  (Unit `  (ℤ/n `  N ) ) )  =  ( phi `  N ) )
10199, 100breqtrd 4679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( od `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( phi `  N ) )
10213ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( phi `  N
)  e.  NN )
103102nnzd 11481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( phi `  N
)  e.  ZZ )
104 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21  |-  (.g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )  =  (.g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )
105 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0g
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )  =  ( 0g
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )
10696, 97, 104, 105oddvds 17966 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) )  e.  Grp  /\  x  e.  (Unit `  (ℤ/n `  N ) )  /\  ( phi `  N )  e.  ZZ )  -> 
( ( ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( phi `  N )  <->  ( ( phi `  N ) (.g `  ( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) ) ) x )  =  ( 0g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) ) )
10785, 95, 103, 106syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( phi `  N )  <->  ( ( phi `  N ) (.g `  ( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) ) ) x )  =  ( 0g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) ) )
108101, 107mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) x )  =  ( 0g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) )
10982, 70unitsubm 18670 . . . . . . . . . . . . . . . . . . . 20  |-  ( (ℤ/n `  N )  e.  Ring  -> 
(Unit `  (ℤ/n `  N ) )  e.  (SubMnd `  (mulGrp `  (ℤ/n `  N
) ) ) )
11081, 109syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
(Unit `  (ℤ/n `  N ) )  e.  (SubMnd `  (mulGrp `  (ℤ/n `  N
) ) ) )
11172, 83, 104submmulg 17586 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (Unit `  (ℤ/n `  N ) )  e.  (SubMnd `  (mulGrp `  (ℤ/n `  N
) ) )  /\  ( phi `  N )  e.  NN0  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( phi `  N ) (.g `  (mulGrp `  (ℤ/n `  N ) ) ) x )  =  ( ( phi `  N
) (.g `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) x ) )
112110, 68, 95, 111syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (mulGrp `  (ℤ/n `  N ) ) ) x )  =  ( ( phi `  N
) (.g `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) x ) )
113 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 1r `  (ℤ/n `  N
) )
11470, 113ringidval 18503 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 0g `  (mulGrp `  (ℤ/n `  N ) ) )
11583, 114subm0 17356 . . . . . . . . . . . . . . . . . . 19  |-  ( (Unit `  (ℤ/n `  N ) )  e.  (SubMnd `  (mulGrp `  (ℤ/n `  N
) ) )  -> 
( 1r `  (ℤ/n `  N
) )  =  ( 0g `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) )
116110, 115syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( 1r `  (ℤ/n `  N
) )  =  ( 0g `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) )
117108, 112, 1163eqtr4d 2666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (mulGrp `  (ℤ/n `  N ) ) ) x )  =  ( 1r `  (ℤ/n `  N
) ) )
118117fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  (
( phi `  N
) (.g `  (mulGrp `  (ℤ/n `  N
) ) ) x ) )  =  ( f `  ( 1r
`  (ℤ/n `  N ) ) ) )
11975, 118eqtr3d 2658 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (mulGrp ` fld ) ) ( f `  x ) )  =  ( f `  ( 1r `  (ℤ/n `  N ) ) ) )
120 cnfldexp 19779 . . . . . . . . . . . . . . . 16  |-  ( ( ( f `  x
)  e.  CC  /\  ( phi `  N )  e.  NN0 )  -> 
( ( phi `  N ) (.g `  (mulGrp ` fld ) ) ( f `  x ) )  =  ( ( f `  x ) ^ ( phi `  N ) ) )
12164, 68, 120syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (mulGrp ` fld ) ) ( f `  x ) )  =  ( ( f `  x ) ^ ( phi `  N ) ) )
122 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
123 cnfld1 19771 . . . . . . . . . . . . . . . . . 18  |-  1  =  ( 1r ` fld )
124122, 123ringidval 18503 . . . . . . . . . . . . . . . . 17  |-  1  =  ( 0g `  (mulGrp ` fld ) )
125114, 124mhm0 17343 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( (mulGrp `  (ℤ/n `  N ) ) MndHom  (mulGrp ` fld ) )  ->  ( f `  ( 1r `  (ℤ/n `  N
) ) )  =  1 )
12667, 125syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  ( 1r `  (ℤ/n `  N ) ) )  =  1 )
127119, 121, 1263eqtr3d 2664 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( f `  x ) ^ ( phi `  N ) )  =  1 )
128127oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( ( f `
 x ) ^
( phi `  N
) )  -  1 )  =  ( 1  -  1 ) )
129 1m1e0 11089 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
130128, 129syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( ( f `
 x ) ^
( phi `  N
) )  -  1 )  =  0 )
131 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( z  =  ( f `  x )  ->  (
z ^ ( phi `  N ) )  =  ( ( f `  x ) ^ ( phi `  N ) ) )
132131oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( z  =  ( f `  x )  ->  (
( z ^ ( phi `  N ) )  -  1 )  =  ( ( ( f `
 x ) ^
( phi `  N
) )  -  1 ) )
133132eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( z  =  ( f `  x )  ->  (
( ( z ^
( phi `  N
) )  -  1 )  =  0  <->  (
( ( f `  x ) ^ ( phi `  N ) )  -  1 )  =  0 ) )
134133elrab 3363 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 }  <->  ( ( f `
 x )  e.  CC  /\  ( ( ( f `  x
) ^ ( phi `  N ) )  - 
1 )  =  0 ) )
13564, 130, 134sylanbrc 698 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  x
)  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )
136135expr 643 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( f `
 x )  =/=  0  ->  ( f `  x )  e.  {
z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) )
13761, 136syl5bir 233 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( -.  (
f `  x )  e.  { 0 }  ->  ( f `  x )  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } ) )
138137orrd 393 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( f `
 x )  e. 
{ 0 }  \/  ( f `  x
)  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } ) )
139 elun 3753 . . . . . . . 8  |-  ( ( f `  x )  e.  ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  <->  ( (
f `  x )  e.  { 0 }  \/  ( f `  x
)  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } ) )
140138, 139sylibr 224 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( f `  x )  e.  ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) )
141140ralrimiva 2966 . . . . . 6  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  A. x  e.  (
Base `  (ℤ/n `  N ) ) ( f `  x )  e.  ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } ) )
142 ffnfv 6388 . . . . . 6  |-  ( f : ( Base `  (ℤ/n `  N
) ) --> ( { 0 }  u.  {
z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  <->  ( f  Fn  ( Base `  (ℤ/n `  N
) )  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( f `  x )  e.  ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } ) ) )
14357, 141, 142sylanbrc 698 . . . . 5  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  f : ( Base `  (ℤ/n `  N ) ) --> ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) )
144143ex 450 . . . 4  |-  ( N  e.  NN  ->  (
f  e.  D  -> 
f : ( Base `  (ℤ/n `  N ) ) --> ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) ) )
14546, 49elmapd 7871 . . . 4  |-  ( N  e.  NN  ->  (
f  e.  ( ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  <-> 
f : ( Base `  (ℤ/n `  N ) ) --> ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) ) )
146144, 145sylibrd 249 . . 3  |-  ( N  e.  NN  ->  (
f  e.  D  -> 
f  e.  ( ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) ) ) )
147146ssrdv 3609 . 2  |-  ( N  e.  NN  ->  D  C_  ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) ) )
148 ssfi 8180 . 2  |-  ( ( ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  e.  Fin  /\  D  C_  ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) ) )  ->  D  e.  Fin )
14951, 147, 148syl2anc 693 1  |-  ( N  e.  NN  ->  D  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   ^cexp 12860   #chash 13117    || cdvds 14983   phicphi 15469   Basecbs 15857   ↾s cress 15858   0gc0g 16100   MndHom cmhm 17333  SubMndcsubmnd 17334   Grpcgrp 17422  .gcmg 17540   odcod 17944  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   CRingccrg 18548  Unitcui 18639  ℂfldccnfld 19746  ℤ/nczn 19851   0pc0p 23436  Polycply 23940  degcdgr 23943  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-dvds 14984  df-gcd 15217  df-phi 15471  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-od 17948  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046  df-dchr 24958
This theorem is referenced by:  sumdchr2  24995  dchrhash  24996  rpvmasum2  25201  dchrisum0re  25202
  Copyright terms: Public domain W3C validator