Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptresicc Structured version   Visualization version   Unicode version

Theorem dvmptresicc 40134
Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptresicc.f  |-  F  =  ( x  e.  CC  |->  A )
dvmptresicc.a  |-  ( (
ph  /\  x  e.  CC )  ->  A  e.  CC )
dvmptresicc.fdv  |-  ( ph  ->  ( CC  _D  F
)  =  ( x  e.  CC  |->  B ) )
dvmptresicc.b  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  CC )
dvmptresicc.c  |-  ( ph  ->  C  e.  RR )
dvmptresicc.d  |-  ( ph  ->  D  e.  RR )
Assertion
Ref Expression
dvmptresicc  |-  ( ph  ->  ( RR  _D  (
x  e.  ( C [,] D )  |->  A ) )  =  ( x  e.  ( C (,) D )  |->  B ) )
Distinct variable groups:    x, C    x, D    ph, x
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem dvmptresicc
StepHypRef Expression
1 dvmptresicc.f . . . . 5  |-  F  =  ( x  e.  CC  |->  A )
21reseq1i 5392 . . . 4  |-  ( F  |`  ( C [,] D
) )  =  ( ( x  e.  CC  |->  A )  |`  ( C [,] D ) )
3 dvmptresicc.c . . . . . . 7  |-  ( ph  ->  C  e.  RR )
4 dvmptresicc.d . . . . . . 7  |-  ( ph  ->  D  e.  RR )
53, 4iccssred 39727 . . . . . 6  |-  ( ph  ->  ( C [,] D
)  C_  RR )
6 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
76a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
85, 7sstrd 3613 . . . . 5  |-  ( ph  ->  ( C [,] D
)  C_  CC )
98resmptd 5452 . . . 4  |-  ( ph  ->  ( ( x  e.  CC  |->  A )  |`  ( C [,] D ) )  =  ( x  e.  ( C [,] D )  |->  A ) )
102, 9syl5eq 2668 . . 3  |-  ( ph  ->  ( F  |`  ( C [,] D ) )  =  ( x  e.  ( C [,] D
)  |->  A ) )
1110oveq2d 6666 . 2  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] D ) ) )  =  ( RR  _D  ( x  e.  ( C [,] D )  |->  A ) ) )
125resabs1d 5428 . . . . 5  |-  ( ph  ->  ( ( F  |`  RR )  |`  ( C [,] D ) )  =  ( F  |`  ( C [,] D ) ) )
1312eqcomd 2628 . . . 4  |-  ( ph  ->  ( F  |`  ( C [,] D ) )  =  ( ( F  |`  RR )  |`  ( C [,] D ) ) )
1413oveq2d 6666 . . 3  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] D ) ) )  =  ( RR  _D  ( ( F  |`  RR )  |`  ( C [,] D ) ) ) )
15 dvmptresicc.a . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  A  e.  CC )
1615, 1fmptd 6385 . . . . 5  |-  ( ph  ->  F : CC --> CC )
1716, 7fssresd 6071 . . . 4  |-  ( ph  ->  ( F  |`  RR ) : RR --> CC )
18 ssid 3624 . . . . 5  |-  RR  C_  RR
1918a1i 11 . . . 4  |-  ( ph  ->  RR  C_  RR )
20 eqid 2622 . . . . 5  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2120tgioo2 22606 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
2220, 21dvres 23675 . . . 4  |-  ( ( ( RR  C_  CC  /\  ( F  |`  RR ) : RR --> CC )  /\  ( RR  C_  RR  /\  ( C [,] D )  C_  RR ) )  ->  ( RR  _D  ( ( F  |`  RR )  |`  ( C [,] D ) ) )  =  ( ( RR  _D  ( F  |`  RR ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] D ) ) ) )
237, 17, 19, 5, 22syl22anc 1327 . . 3  |-  ( ph  ->  ( RR  _D  (
( F  |`  RR )  |`  ( C [,] D
) ) )  =  ( ( RR  _D  ( F  |`  RR ) )  |`  ( ( int `  ( topGen `  ran  (,) ) ) `  ( C [,] D ) ) ) )
24 reelprrecn 10028 . . . . . . 7  |-  RR  e.  { RR ,  CC }
2524a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  { RR ,  CC } )
26 ssid 3624 . . . . . . 7  |-  CC  C_  CC
2726a1i 11 . . . . . 6  |-  ( ph  ->  CC  C_  CC )
28 dvmptresicc.fdv . . . . . . . . 9  |-  ( ph  ->  ( CC  _D  F
)  =  ( x  e.  CC  |->  B ) )
2928dmeqd 5326 . . . . . . . 8  |-  ( ph  ->  dom  ( CC  _D  F )  =  dom  ( x  e.  CC  |->  B ) )
30 dvmptresicc.b . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  CC )
3130ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  CC  B  e.  CC )
32 dmmptg 5632 . . . . . . . . 9  |-  ( A. x  e.  CC  B  e.  CC  ->  dom  ( x  e.  CC  |->  B )  =  CC )
3331, 32syl 17 . . . . . . . 8  |-  ( ph  ->  dom  ( x  e.  CC  |->  B )  =  CC )
3429, 33eqtr2d 2657 . . . . . . 7  |-  ( ph  ->  CC  =  dom  ( CC  _D  F ) )
357, 34sseqtrd 3641 . . . . . 6  |-  ( ph  ->  RR  C_  dom  ( CC 
_D  F ) )
36 dvres3 23677 . . . . . 6  |-  ( ( ( RR  e.  { RR ,  CC }  /\  F : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_  dom  ( CC  _D  F
) ) )  -> 
( RR  _D  ( F  |`  RR ) )  =  ( ( CC 
_D  F )  |`  RR ) )
3725, 16, 27, 35, 36syl22anc 1327 . . . . 5  |-  ( ph  ->  ( RR  _D  ( F  |`  RR ) )  =  ( ( CC 
_D  F )  |`  RR ) )
38 iccntr 22624 . . . . . 6  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] D ) )  =  ( C (,) D
) )
393, 4, 38syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] D ) )  =  ( C (,) D
) )
4037, 39reseq12d 5397 . . . 4  |-  ( ph  ->  ( ( RR  _D  ( F  |`  RR ) )  |`  ( ( int `  ( topGen `  ran  (,) ) ) `  ( C [,] D ) ) )  =  ( ( ( CC  _D  F
)  |`  RR )  |`  ( C (,) D ) ) )
41 ioossre 12235 . . . . 5  |-  ( C (,) D )  C_  RR
42 resabs1 5427 . . . . 5  |-  ( ( C (,) D ) 
C_  RR  ->  ( ( ( CC  _D  F
)  |`  RR )  |`  ( C (,) D ) )  =  ( ( CC  _D  F )  |`  ( C (,) D
) ) )
4341, 42mp1i 13 . . . 4  |-  ( ph  ->  ( ( ( CC 
_D  F )  |`  RR )  |`  ( C (,) D ) )  =  ( ( CC 
_D  F )  |`  ( C (,) D ) ) )
4428reseq1d 5395 . . . . 5  |-  ( ph  ->  ( ( CC  _D  F )  |`  ( C (,) D ) )  =  ( ( x  e.  CC  |->  B )  |`  ( C (,) D
) ) )
45 ioosscn 39716 . . . . . 6  |-  ( C (,) D )  C_  CC
46 resmpt 5449 . . . . . 6  |-  ( ( C (,) D ) 
C_  CC  ->  ( ( x  e.  CC  |->  B )  |`  ( C (,) D ) )  =  ( x  e.  ( C (,) D ) 
|->  B ) )
4745, 46mp1i 13 . . . . 5  |-  ( ph  ->  ( ( x  e.  CC  |->  B )  |`  ( C (,) D ) )  =  ( x  e.  ( C (,) D )  |->  B ) )
4844, 47eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( CC  _D  F )  |`  ( C (,) D ) )  =  ( x  e.  ( C (,) D
)  |->  B ) )
4940, 43, 483eqtrd 2660 . . 3  |-  ( ph  ->  ( ( RR  _D  ( F  |`  RR ) )  |`  ( ( int `  ( topGen `  ran  (,) ) ) `  ( C [,] D ) ) )  =  ( x  e.  ( C (,) D )  |->  B ) )
5014, 23, 493eqtrd 2660 . 2  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] D ) ) )  =  ( x  e.  ( C (,) D
)  |->  B ) )
5111, 50eqtr3d 2658 1  |-  ( ph  ->  ( RR  _D  (
x  e.  ( C [,] D )  |->  A ) )  =  ( x  e.  ( C (,) D )  |->  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {cpr 4179    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   (,)cioo 12175   [,]cicc 12178   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631
This theorem is referenced by:  itgsincmulx  40190
  Copyright terms: Public domain W3C validator