MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres3 Structured version   Visualization version   Unicode version

Theorem dvres3 23677
Description: Restriction of a complex differentiable function to the reals. (Contributed by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvres3  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  -> 
( S  _D  ( F  |`  S ) )  =  ( ( CC 
_D  F )  |`  S ) )

Proof of Theorem dvres3
StepHypRef Expression
1 reldv 23634 . . 3  |-  Rel  ( S  _D  ( F  |`  S ) )
2 recnprss 23668 . . . . . 6  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
32ad2antrr 762 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  S  C_  CC )
4 simplr 792 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  F : A --> CC )
5 simprr 796 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  S  C_  dom  ( CC 
_D  F ) )
6 ssid 3624 . . . . . . . . 9  |-  CC  C_  CC
76a1i 11 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  CC  C_  CC )
8 simprl 794 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  A  C_  CC )
97, 4, 8dvbss 23665 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  dom  ( CC  _D  F
)  C_  A )
105, 9sstrd 3613 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  S  C_  A )
114, 10fssresd 6071 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  -> 
( F  |`  S ) : S --> CC )
12 ssid 3624 . . . . . 6  |-  S  C_  S
1312a1i 11 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  S  C_  S )
143, 11, 13dvbss 23665 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  dom  ( S  _D  ( F  |`  S ) ) 
C_  S )
15 ssdmres 5420 . . . . 5  |-  ( S 
C_  dom  ( CC  _D  F )  <->  dom  ( ( CC  _D  F )  |`  S )  =  S )
165, 15sylib 208 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  dom  ( ( CC  _D  F )  |`  S )  =  S )
1714, 16sseqtr4d 3642 . . 3  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  dom  ( S  _D  ( F  |`  S ) ) 
C_  dom  ( ( CC  _D  F )  |`  S ) )
18 relssres 5437 . . 3  |-  ( ( Rel  ( S  _D  ( F  |`  S ) )  /\  dom  ( S  _D  ( F  |`  S ) )  C_  dom  ( ( CC  _D  F )  |`  S ) )  ->  ( ( S  _D  ( F  |`  S ) )  |`  dom  ( ( CC  _D  F )  |`  S ) )  =  ( S  _D  ( F  |`  S ) ) )
191, 17, 18sylancr 695 . 2  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  -> 
( ( S  _D  ( F  |`  S ) )  |`  dom  ( ( CC  _D  F )  |`  S ) )  =  ( S  _D  ( F  |`  S ) ) )
20 dvfg 23670 . . . . 5  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  ( F  |`  S ) ) : dom  ( S  _D  ( F  |`  S ) ) --> CC )
2120ad2antrr 762 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  -> 
( S  _D  ( F  |`  S ) ) : dom  ( S  _D  ( F  |`  S ) ) --> CC )
22 ffun 6048 . . . 4  |-  ( ( S  _D  ( F  |`  S ) ) : dom  ( S  _D  ( F  |`  S ) ) --> CC  ->  Fun  ( S  _D  ( F  |`  S ) ) )
2321, 22syl 17 . . 3  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  ->  Fun  ( S  _D  ( F  |`  S ) ) )
24 dvres2 23676 . . . 4  |-  ( ( ( CC  C_  CC  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  CC ) )  ->  (
( CC  _D  F
)  |`  S )  C_  ( S  _D  ( F  |`  S ) ) )
257, 4, 8, 3, 24syl22anc 1327 . . 3  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  -> 
( ( CC  _D  F )  |`  S ) 
C_  ( S  _D  ( F  |`  S ) ) )
26 funssres 5930 . . 3  |-  ( ( Fun  ( S  _D  ( F  |`  S ) )  /\  ( ( CC  _D  F )  |`  S )  C_  ( S  _D  ( F  |`  S ) ) )  ->  ( ( S  _D  ( F  |`  S ) )  |`  dom  ( ( CC  _D  F )  |`  S ) )  =  ( ( CC  _D  F )  |`  S ) )
2723, 25, 26syl2anc 693 . 2  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  -> 
( ( S  _D  ( F  |`  S ) )  |`  dom  ( ( CC  _D  F )  |`  S ) )  =  ( ( CC  _D  F )  |`  S ) )
2819, 27eqtr3d 2658 1  |-  ( ( ( S  e.  { RR ,  CC }  /\  F : A --> CC )  /\  ( A  C_  CC  /\  S  C_  dom  ( CC  _D  F
) ) )  -> 
( S  _D  ( F  |`  S ) )  =  ( ( CC 
_D  F )  |`  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {cpr 4179   dom cdm 5114    |` cres 5116   Rel wrel 5119   Fun wfun 5882   -->wf 5884  (class class class)co 6650   CCcc 9934   RRcr 9935    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvcmul  23707  dvcmulf  23708  efcvx  24203  dvrelog  24383  itgpowd  37800  lhe4.4ex1a  38528  dvsconst  38529  dvsid  38530  dvsef  38531  dvcosre  40126  dvcnre  40130  dvmptresicc  40134  itgsinexplem1  40169  itgcoscmulx  40185  dirkercncflem2  40321  fourierdlem57  40380  fourierdlem58  40381
  Copyright terms: Public domain W3C validator