MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcvx Structured version   Visualization version   Unicode version

Theorem efcvx 24203
Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
efcvx  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( exp `  A ) )  +  ( ( 1  -  T )  x.  ( exp `  B ) ) ) )

Proof of Theorem efcvx
StepHypRef Expression
1 simpl1 1064 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  RR )
2 simpl2 1065 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  RR )
3 simpl3 1066 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  <  B
)
4 reeff1o 24201 . . . . . . 7  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
5 f1of 6137 . . . . . . 7  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  ->  ( exp  |`  RR ) : RR --> RR+ )
64, 5ax-mp 5 . . . . . 6  |-  ( exp  |`  RR ) : RR --> RR+
7 rpssre 11843 . . . . . 6  |-  RR+  C_  RR
8 fss 6056 . . . . . 6  |-  ( ( ( exp  |`  RR ) : RR --> RR+  /\  RR+  C_  RR )  ->  ( exp  |`  RR ) : RR --> RR )
96, 7, 8mp2an 708 . . . . 5  |-  ( exp  |`  RR ) : RR --> RR
10 iccssre 12255 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
111, 2, 10syl2anc 693 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A [,] B )  C_  RR )
12 fssres2 6072 . . . . 5  |-  ( ( ( exp  |`  RR ) : RR --> RR  /\  ( A [,] B ) 
C_  RR )  -> 
( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
139, 11, 12sylancr 695 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
14 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
1511, 14syl6ss 3615 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A [,] B )  C_  CC )
16 efcn 24197 . . . . . 6  |-  exp  e.  ( CC -cn-> CC )
17 rescncf 22700 . . . . . 6  |-  ( ( A [,] B ) 
C_  CC  ->  ( exp 
e.  ( CC -cn-> CC )  ->  ( exp  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) ) )
1815, 16, 17mpisyl 21 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
19 cncffvrn 22701 . . . . 5  |-  ( ( RR  C_  CC  /\  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )  ->  ( ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR ) )
2014, 18, 19sylancr 695 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> RR )  <->  ( exp  |`  ( A [,] B
) ) : ( A [,] B ) --> RR ) )
2113, 20mpbird 247 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
22 reefiso 24202 . . . . . 6  |-  ( exp  |`  RR )  Isom  <  ,  <  ( RR ,  RR+ )
2322a1i 11 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  RR ) 
Isom  <  ,  <  ( RR ,  RR+ ) )
24 ioossre 12235 . . . . . 6  |-  ( A (,) B )  C_  RR
2524a1i 11 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A (,) B )  C_  RR )
26 eqidd 2623 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR ) " ( A (,) B ) )  =  ( ( exp  |`  RR ) " ( A (,) B ) ) )
27 isores3 6585 . . . . 5  |-  ( ( ( exp  |`  RR ) 
Isom  <  ,  <  ( RR ,  RR+ )  /\  ( A (,) B ) 
C_  RR  /\  (
( exp  |`  RR )
" ( A (,) B ) )  =  ( ( exp  |`  RR )
" ( A (,) B ) ) )  ->  ( ( exp  |`  RR )  |`  ( A (,) B ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
2823, 25, 26, 27syl3anc 1326 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR )  |`  ( A (,) B ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
29 ssid 3624 . . . . . . 7  |-  RR  C_  RR
30 fss 6056 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR --> RR  /\  RR  C_  CC )  -> 
( exp  |`  RR ) : RR --> CC )
319, 14, 30mp2an 708 . . . . . . . 8  |-  ( exp  |`  RR ) : RR --> CC
32 eqid 2622 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3332tgioo2 22606 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
3432, 33dvres 23675 . . . . . . . 8  |-  ( ( ( RR  C_  CC  /\  ( exp  |`  RR ) : RR --> CC )  /\  ( RR  C_  RR  /\  ( A [,] B )  C_  RR ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B ) ) )  =  ( ( RR  _D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
3514, 31, 34mpanl12 718 . . . . . . 7  |-  ( ( RR  C_  RR  /\  ( A [,] B )  C_  RR )  ->  ( RR 
_D  ( ( exp  |`  RR )  |`  ( A [,] B ) ) )  =  ( ( RR  _D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
3629, 11, 35sylancr 695 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B
) ) )  =  ( ( RR  _D  ( exp  |`  RR )
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) ) ) )
3711resabs1d 5428 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR )  |`  ( A [,] B ) )  =  ( exp  |`  ( A [,] B ) ) )
3837oveq2d 6666 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B
) ) )  =  ( RR  _D  ( exp  |`  ( A [,] B ) ) ) )
39 reelprrecn 10028 . . . . . . . . . 10  |-  RR  e.  { RR ,  CC }
40 eff 14812 . . . . . . . . . 10  |-  exp : CC
--> CC
41 ssid 3624 . . . . . . . . . 10  |-  CC  C_  CC
42 dvef 23743 . . . . . . . . . . . . 13  |-  ( CC 
_D  exp )  =  exp
4342dmeqi 5325 . . . . . . . . . . . 12  |-  dom  ( CC  _D  exp )  =  dom  exp
4440fdmi 6052 . . . . . . . . . . . 12  |-  dom  exp  =  CC
4543, 44eqtri 2644 . . . . . . . . . . 11  |-  dom  ( CC  _D  exp )  =  CC
4614, 45sseqtr4i 3638 . . . . . . . . . 10  |-  RR  C_  dom  ( CC  _D  exp )
47 dvres3 23677 . . . . . . . . . 10  |-  ( ( ( RR  e.  { RR ,  CC }  /\  exp : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_  dom  ( CC  _D  exp )
) )  ->  ( RR  _D  ( exp  |`  RR ) )  =  ( ( CC  _D  exp )  |`  RR ) )
4839, 40, 41, 46, 47mp4an 709 . . . . . . . . 9  |-  ( RR 
_D  ( exp  |`  RR ) )  =  ( ( CC  _D  exp )  |`  RR )
4942reseq1i 5392 . . . . . . . . 9  |-  ( ( CC  _D  exp )  |`  RR )  =  ( exp  |`  RR )
5048, 49eqtri 2644 . . . . . . . 8  |-  ( RR 
_D  ( exp  |`  RR ) )  =  ( exp  |`  RR )
5150a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  RR )
)  =  ( exp  |`  RR ) )
52 iccntr 22624 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
531, 2, 52syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5451, 53reseq12d 5397 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( RR 
_D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B
) ) )
5536, 38, 543eqtr3d 2664 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  ( A [,] B ) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B ) ) )
56 isoeq1 6567 . . . . 5  |-  ( ( RR  _D  ( exp  |`  ( A [,] B
) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B
) )  ->  (
( RR  _D  ( exp  |`  ( A [,] B ) ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) )  <-> 
( ( exp  |`  RR )  |`  ( A (,) B
) )  Isom  <  ,  <  ( ( A (,) B ) ,  ( ( exp  |`  RR )
" ( A (,) B ) ) ) ) )
5755, 56syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( RR 
_D  ( exp  |`  ( A [,] B ) ) )  Isom  <  ,  <  ( ( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) )  <-> 
( ( exp  |`  RR )  |`  ( A (,) B
) )  Isom  <  ,  <  ( ( A (,) B ) ,  ( ( exp  |`  RR )
" ( A (,) B ) ) ) ) )
5828, 57mpbird 247 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  ( A [,] B ) ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
59 simpr 477 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  ( 0 (,) 1 ) )
60 eqid 2622 . . 3  |-  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) )  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
611, 2, 3, 21, 58, 59, 60dvcvx 23783 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( ( exp  |`  ( A [,] B ) ) `  A ) )  +  ( ( 1  -  T )  x.  (
( exp  |`  ( A [,] B ) ) `
 B ) ) ) )
62 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
63 ioossre 12235 . . . . . . . . 9  |-  ( 0 (,) 1 )  C_  RR
6463, 59sseldi 3601 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  RR )
6564recnd 10068 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  CC )
66 nncan 10310 . . . . . . 7  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
6762, 65, 66sylancr 695 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( 1  -  ( 1  -  T
) )  =  T )
6867oveq1d 6665 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( 1  -  ( 1  -  T ) )  x.  A )  =  ( T  x.  A ) )
6968oveq1d 6665 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  =  ( ( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )
70 ioossicc 12259 . . . . . . 7  |-  ( 0 (,) 1 )  C_  ( 0 [,] 1
)
7170, 59sseldi 3601 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  ( 0 [,] 1 ) )
72 iirev 22728 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
7371, 72syl 17 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( 1  -  T )  e.  ( 0 [,] 1 ) )
74 lincmb01cmp 12315 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
7573, 74syldan 487 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
7669, 75eqeltrrd 2702 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
77 fvres 6207 . . 3  |-  ( ( ( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  =  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
7876, 77syl 17 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  =  ( exp `  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) ) )
791rexrd 10089 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  RR* )
802rexrd 10089 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  RR* )
811, 2, 3ltled 10185 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  <_  B
)
82 lbicc2 12288 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
8379, 80, 81, 82syl3anc 1326 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  ( A [,] B ) )
84 fvres 6207 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 A )  =  ( exp `  A
) )
8583, 84syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  A
)  =  ( exp `  A ) )
8685oveq2d 6666 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( T  x.  ( ( exp  |`  ( A [,] B ) ) `
 A ) )  =  ( T  x.  ( exp `  A ) ) )
87 ubicc2 12289 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
8879, 80, 81, 87syl3anc 1326 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  ( A [,] B ) )
89 fvres 6207 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 B )  =  ( exp `  B
) )
9088, 89syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  B
)  =  ( exp `  B ) )
9190oveq2d 6666 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( 1  -  T )  x.  ( ( exp  |`  ( A [,] B ) ) `
 B ) )  =  ( ( 1  -  T )  x.  ( exp `  B
) ) )
9286, 91oveq12d 6668 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( T  x.  ( ( exp  |`  ( A [,] B
) ) `  A
) )  +  ( ( 1  -  T
)  x.  ( ( exp  |`  ( A [,] B ) ) `  B ) ) )  =  ( ( T  x.  ( exp `  A
) )  +  ( ( 1  -  T
)  x.  ( exp `  B ) ) ) )
9361, 78, 923brtr3d 4684 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( exp `  A ) )  +  ( ( 1  -  T )  x.  ( exp `  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   {cpr 4179   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   expce 14792   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator