| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efcvx | Structured version Visualization version Unicode version | ||
| Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| Ref | Expression |
|---|---|
| efcvx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1064 |
. . 3
| |
| 2 | simpl2 1065 |
. . 3
| |
| 3 | simpl3 1066 |
. . 3
| |
| 4 | reeff1o 24201 |
. . . . . . 7
| |
| 5 | f1of 6137 |
. . . . . . 7
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . 6
|
| 7 | rpssre 11843 |
. . . . . 6
| |
| 8 | fss 6056 |
. . . . . 6
| |
| 9 | 6, 7, 8 | mp2an 708 |
. . . . 5
|
| 10 | iccssre 12255 |
. . . . . 6
| |
| 11 | 1, 2, 10 | syl2anc 693 |
. . . . 5
|
| 12 | fssres2 6072 |
. . . . 5
| |
| 13 | 9, 11, 12 | sylancr 695 |
. . . 4
|
| 14 | ax-resscn 9993 |
. . . . 5
| |
| 15 | 11, 14 | syl6ss 3615 |
. . . . . 6
|
| 16 | efcn 24197 |
. . . . . 6
| |
| 17 | rescncf 22700 |
. . . . . 6
| |
| 18 | 15, 16, 17 | mpisyl 21 |
. . . . 5
|
| 19 | cncffvrn 22701 |
. . . . 5
| |
| 20 | 14, 18, 19 | sylancr 695 |
. . . 4
|
| 21 | 13, 20 | mpbird 247 |
. . 3
|
| 22 | reefiso 24202 |
. . . . . 6
| |
| 23 | 22 | a1i 11 |
. . . . 5
|
| 24 | ioossre 12235 |
. . . . . 6
| |
| 25 | 24 | a1i 11 |
. . . . 5
|
| 26 | eqidd 2623 |
. . . . 5
| |
| 27 | isores3 6585 |
. . . . 5
| |
| 28 | 23, 25, 26, 27 | syl3anc 1326 |
. . . 4
|
| 29 | ssid 3624 |
. . . . . . 7
| |
| 30 | fss 6056 |
. . . . . . . . 9
| |
| 31 | 9, 14, 30 | mp2an 708 |
. . . . . . . 8
|
| 32 | eqid 2622 |
. . . . . . . . 9
| |
| 33 | 32 | tgioo2 22606 |
. . . . . . . . 9
|
| 34 | 32, 33 | dvres 23675 |
. . . . . . . 8
|
| 35 | 14, 31, 34 | mpanl12 718 |
. . . . . . 7
|
| 36 | 29, 11, 35 | sylancr 695 |
. . . . . 6
|
| 37 | 11 | resabs1d 5428 |
. . . . . . 7
|
| 38 | 37 | oveq2d 6666 |
. . . . . 6
|
| 39 | reelprrecn 10028 |
. . . . . . . . . 10
| |
| 40 | eff 14812 |
. . . . . . . . . 10
| |
| 41 | ssid 3624 |
. . . . . . . . . 10
| |
| 42 | dvef 23743 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | dmeqi 5325 |
. . . . . . . . . . . 12
|
| 44 | 40 | fdmi 6052 |
. . . . . . . . . . . 12
|
| 45 | 43, 44 | eqtri 2644 |
. . . . . . . . . . 11
|
| 46 | 14, 45 | sseqtr4i 3638 |
. . . . . . . . . 10
|
| 47 | dvres3 23677 |
. . . . . . . . . 10
| |
| 48 | 39, 40, 41, 46, 47 | mp4an 709 |
. . . . . . . . 9
|
| 49 | 42 | reseq1i 5392 |
. . . . . . . . 9
|
| 50 | 48, 49 | eqtri 2644 |
. . . . . . . 8
|
| 51 | 50 | a1i 11 |
. . . . . . 7
|
| 52 | iccntr 22624 |
. . . . . . . 8
| |
| 53 | 1, 2, 52 | syl2anc 693 |
. . . . . . 7
|
| 54 | 51, 53 | reseq12d 5397 |
. . . . . 6
|
| 55 | 36, 38, 54 | 3eqtr3d 2664 |
. . . . 5
|
| 56 | isoeq1 6567 |
. . . . 5
| |
| 57 | 55, 56 | syl 17 |
. . . 4
|
| 58 | 28, 57 | mpbird 247 |
. . 3
|
| 59 | simpr 477 |
. . 3
| |
| 60 | eqid 2622 |
. . 3
| |
| 61 | 1, 2, 3, 21, 58, 59, 60 | dvcvx 23783 |
. 2
|
| 62 | ax-1cn 9994 |
. . . . . . 7
| |
| 63 | ioossre 12235 |
. . . . . . . . 9
| |
| 64 | 63, 59 | sseldi 3601 |
. . . . . . . 8
|
| 65 | 64 | recnd 10068 |
. . . . . . 7
|
| 66 | nncan 10310 |
. . . . . . 7
| |
| 67 | 62, 65, 66 | sylancr 695 |
. . . . . 6
|
| 68 | 67 | oveq1d 6665 |
. . . . 5
|
| 69 | 68 | oveq1d 6665 |
. . . 4
|
| 70 | ioossicc 12259 |
. . . . . . 7
| |
| 71 | 70, 59 | sseldi 3601 |
. . . . . 6
|
| 72 | iirev 22728 |
. . . . . 6
| |
| 73 | 71, 72 | syl 17 |
. . . . 5
|
| 74 | lincmb01cmp 12315 |
. . . . 5
| |
| 75 | 73, 74 | syldan 487 |
. . . 4
|
| 76 | 69, 75 | eqeltrrd 2702 |
. . 3
|
| 77 | fvres 6207 |
. . 3
| |
| 78 | 76, 77 | syl 17 |
. 2
|
| 79 | 1 | rexrd 10089 |
. . . . . 6
|
| 80 | 2 | rexrd 10089 |
. . . . . 6
|
| 81 | 1, 2, 3 | ltled 10185 |
. . . . . 6
|
| 82 | lbicc2 12288 |
. . . . . 6
| |
| 83 | 79, 80, 81, 82 | syl3anc 1326 |
. . . . 5
|
| 84 | fvres 6207 |
. . . . 5
| |
| 85 | 83, 84 | syl 17 |
. . . 4
|
| 86 | 85 | oveq2d 6666 |
. . 3
|
| 87 | ubicc2 12289 |
. . . . . 6
| |
| 88 | 79, 80, 81, 87 | syl3anc 1326 |
. . . . 5
|
| 89 | fvres 6207 |
. . . . 5
| |
| 90 | 88, 89 | syl 17 |
. . . 4
|
| 91 | 90 | oveq2d 6666 |
. . 3
|
| 92 | 86, 91 | oveq12d 6668 |
. 2
|
| 93 | 61, 78, 92 | 3brtr3d 4684 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-cmp 21190 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-limc 23630 df-dv 23631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |