MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpeq Structured version   Visualization version   Unicode version

Theorem cxpeq 24498
Description: Solve an equation involving an  N-th power. The expression  -u 1  ^c  ( 2  /  N )  =  exp ( 2 pi _i 
/  N ) is a way to write the primitive  N-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
cxpeq  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
Distinct variable groups:    A, n    B, n    n, N

Proof of Theorem cxpeq
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpl2 1065 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  N  e.  NN )
2 nnm1nn0 11334 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
31, 2syl 17 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( N  -  1 )  e.  NN0 )
4 nn0uz 11722 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
53, 4syl6eleq 2711 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
6 eluzfz1 12348 . . . . . 6  |-  ( ( N  -  1 )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
75, 6syl 17 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
8 neg1cn 11124 . . . . . . . . . 10  |-  -u 1  e.  CC
9 2re 11090 . . . . . . . . . . . 12  |-  2  e.  RR
10 simp2 1062 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  e.  NN )
11 nndivre 11056 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  N  e.  NN )  ->  ( 2  /  N
)  e.  RR )
129, 10, 11sylancr 695 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
2  /  N )  e.  RR )
1312recnd 10068 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
2  /  N )  e.  CC )
14 cxpcl 24420 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  ( 2  /  N
)  e.  CC )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
158, 13, 14sylancr 695 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
1615adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
17 0nn0 11307 . . . . . . . 8  |-  0  e.  NN0
18 expcl 12878 . . . . . . . 8  |-  ( ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  0  e. 
NN0 )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 )  e.  CC )
1916, 17, 18sylancl 694 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 )  e.  CC )
2019mul02d 10234 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ 0 ) )  =  0 )
21 simprl 794 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  A  =  0 )
2221oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( A ^ N )  =  ( 0 ^ N
) )
23 simprr 796 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( A ^ N )  =  B )
2410expd 13024 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0 ^ N )  =  0 )
2522, 23, 243eqtr3d 2664 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  B  =  0 )
2625oveq1d 6665 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( B  ^c  ( 1  /  N ) )  =  ( 0  ^c  ( 1  /  N ) ) )
27 nncn 11028 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
28 nnne0 11053 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
29 reccl 10692 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 1  /  N
)  e.  CC )
30 recne0 10698 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 1  /  N
)  =/=  0 )
3129, 300cxpd 24456 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 0  ^c 
( 1  /  N
) )  =  0 )
3227, 28, 31syl2anc 693 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0  ^c  ( 1  /  N ) )  =  0 )
331, 32syl 17 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0  ^c  ( 1  /  N ) )  =  0 )
3426, 33eqtrd 2656 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( B  ^c  ( 1  /  N ) )  =  0 )
3534oveq1d 6665 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 ) )  =  ( 0  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ 0 ) ) )
3620, 35, 213eqtr4rd 2667 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ 0 ) ) )
37 oveq2 6658 . . . . . . . 8  |-  ( n  =  0  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
)  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ 0 ) )
3837oveq2d 6666 . . . . . . 7  |-  ( n  =  0  ->  (
( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) )  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 ) ) )
3938eqeq2d 2632 . . . . . 6  |-  ( n  =  0  ->  ( A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  <->  A  =  (
( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 ) ) ) )
4039rspcev 3309 . . . . 5  |-  ( ( 0  e.  ( 0 ... ( N  - 
1 ) )  /\  A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ 0 ) ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
417, 36, 40syl2anc 693 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
4241expr 643 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =  0
)  ->  ( ( A ^ N )  =  B  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
43 simpl1 1064 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  A  e.  CC )
44 simpr 477 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  A  =/=  0 )
45 simpl2 1065 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  NN )
4645nnzd 11481 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  ZZ )
47 explog 24340 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  N  e.  ZZ )  ->  ( A ^ N )  =  ( exp `  ( N  x.  ( log `  A ) ) ) )
4843, 44, 46, 47syl3anc 1326 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  =  ( exp `  ( N  x.  ( log `  A
) ) ) )
4948eqcomd 2628 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N ) )
5010nncnd 11036 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  e.  CC )
5150adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  CC )
5243, 44logcld 24317 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( log `  A )  e.  CC )
5351, 52mulcld 10060 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( N  x.  ( log `  A
) )  e.  CC )
5445nnnn0d 11351 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  NN0 )
5543, 54expcld 13008 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  e.  CC )
5643, 44, 46expne0d 13014 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  =/=  0
)
57 eflogeq 24348 . . . . . . 7  |-  ( ( ( N  x.  ( log `  A ) )  e.  CC  /\  ( A ^ N )  e.  CC  /\  ( A ^ N )  =/=  0 )  ->  (
( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N )  <->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) ) )
5853, 55, 56, 57syl3anc 1326 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( ( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N )  <->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) ) ) )
5949, 58mpbid 222 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) )
6055, 56logcld 24317 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( log `  ( A ^ N
) )  e.  CC )
6160adantr 481 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( log `  ( A ^ N ) )  e.  CC )
62 ax-icn 9995 . . . . . . . . . . 11  |-  _i  e.  CC
63 2cn 11091 . . . . . . . . . . . 12  |-  2  e.  CC
64 picn 24211 . . . . . . . . . . . 12  |-  pi  e.  CC
6563, 64mulcli 10045 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
6662, 65mulcli 10045 . . . . . . . . . 10  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
67 zcn 11382 . . . . . . . . . . 11  |-  ( m  e.  ZZ  ->  m  e.  CC )
6867adantl 482 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  CC )
69 mulcl 10020 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
2  x.  pi ) )  e.  CC  /\  m  e.  CC )  ->  ( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  e.  CC )
7066, 68, 69sylancr 695 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( _i  x.  (
2  x.  pi ) )  x.  m )  e.  CC )
7161, 70addcld 10059 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  e.  CC )
7251adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  CC )
7352adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( log `  A )  e.  CC )
7410nnne0d 11065 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  =/=  0 )
7574ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  =/=  0 )
7671, 72, 73, 75divmuld 10823 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A
)  <->  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) ) )
77 fveq2 6191 . . . . . . . 8  |-  ( ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A )  ->  ( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) ) )
7872, 75reccld 10794 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
1  /  N )  e.  CC )
7978, 61mulcld 10060 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 1  /  N
)  x.  ( log `  ( A ^ N
) ) )  e.  CC )
8013ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
2  /  N )  e.  CC )
8180, 68mulcld 10060 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 2  /  N
)  x.  m )  e.  CC )
8262, 64mulcli 10045 . . . . . . . . . . . . 13  |-  ( _i  x.  pi )  e.  CC
83 mulcl 10020 . . . . . . . . . . . . 13  |-  ( ( ( ( 2  /  N )  x.  m
)  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
)  e.  CC )
8481, 82, 83sylancl 694 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )  e.  CC )
85 efadd 14824 . . . . . . . . . . . 12  |-  ( ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  e.  CC  /\  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )  e.  CC )  -> 
( exp `  (
( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )  =  ( ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )  x.  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) ) )
8679, 84, 85syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N
)  x.  m )  x.  ( _i  x.  pi ) ) ) )  =  ( ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )  x.  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) ) )
8761, 70, 72, 75divdird 10839 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( ( ( log `  ( A ^ N ) )  /  N )  +  ( ( ( _i  x.  ( 2  x.  pi ) )  x.  m )  /  N
) ) )
8861, 72, 75divrec2d 10805 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( log `  ( A ^ N ) )  /  N )  =  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )
8966a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
_i  x.  ( 2  x.  pi ) )  e.  CC )
9089, 68, 72, 75div23d 10838 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  /  N )  =  ( ( ( _i  x.  ( 2  x.  pi ) )  /  N )  x.  m ) )
9162, 63, 64mul12i 10231 . . . . . . . . . . . . . . . . . 18  |-  ( _i  x.  ( 2  x.  pi ) )  =  ( 2  x.  (
_i  x.  pi )
)
9291oveq1i 6660 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  ( 2  x.  pi ) )  /  N )  =  ( ( 2  x.  ( _i  x.  pi ) )  /  N
)
9363a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  2  e.  CC )
9482a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
_i  x.  pi )  e.  CC )
9593, 94, 72, 75div23d 10838 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 2  x.  (
_i  x.  pi )
)  /  N )  =  ( ( 2  /  N )  x.  ( _i  x.  pi ) ) )
9692, 95syl5eq 2668 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( _i  x.  (
2  x.  pi ) )  /  N )  =  ( ( 2  /  N )  x.  ( _i  x.  pi ) ) )
9796oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  /  N
)  x.  m )  =  ( ( ( 2  /  N )  x.  ( _i  x.  pi ) )  x.  m
) )
9880, 94, 68mul32d 10246 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( 2  /  N )  x.  (
_i  x.  pi )
)  x.  m )  =  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) )
9990, 97, 983eqtrd 2660 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  /  N )  =  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) )
10088, 99oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  /  N )  +  ( ( ( _i  x.  ( 2  x.  pi ) )  x.  m )  /  N
) )  =  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )
10187, 100eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )
102101fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  (
( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) ) )
10355adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( A ^ N )  e.  CC )
10456adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( A ^ N )  =/=  0 )
105103, 104, 78cxpefd 24458 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( A ^ N
)  ^c  ( 1  /  N ) )  =  ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) ) )
1068a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  -u 1  e.  CC )
107 neg1ne0 11126 . . . . . . . . . . . . . . 15  |-  -u 1  =/=  0
108107a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  -u 1  =/=  0 )
109 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
110106, 108, 80, 109cxpmul2zd 24462 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( ( 2  /  N
)  x.  m ) )  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ m
) )
111106, 108, 81cxpefd 24458 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( ( 2  /  N
)  x.  m ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  ( log `  -u 1 ) ) ) )
112 logm1 24335 . . . . . . . . . . . . . . . 16  |-  ( log `  -u 1 )  =  ( _i  x.  pi )
113112oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  /  N
)  x.  m )  x.  ( log `  -u 1
) )  =  ( ( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )
114113fveq2i 6194 . . . . . . . . . . . . . 14  |-  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  ( log `  -u 1 ) ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) )
115111, 114syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( ( 2  /  N
)  x.  m ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) )
116106, 80cxpcld 24454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
1178a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  -u 1  e.  CC )
118107a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  -u 1  =/=  0 )
119117, 118, 13cxpne0d 24459 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( -u 1  ^c  ( 2  /  N ) )  =/=  0 )
120119ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( 2  /  N ) )  =/=  0 )
121116, 120, 109expclzd 13013 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ m
)  e.  CC )
12245adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  NN )
123109, 122zmodcld 12691 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  NN0 )
124116, 123expcld 13008 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
)  e.  CC )
125123nn0zd 11480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  ZZ )
126116, 120, 125expne0d 13014 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
)  =/=  0 )
127116, 120, 125, 109expsubd 13019 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) )  =  ( ( ( -u 1  ^c  ( 2  /  N ) ) ^
m )  /  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
) ) )
128122nnzd 11481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  ZZ )
129 zre 11381 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ZZ  ->  m  e.  RR )
130129adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  RR )
131122nnrpd 11870 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  RR+ )
132 moddifz 12682 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  RR  /\  N  e.  RR+ )  -> 
( ( m  -  ( m  mod  N ) )  /  N )  e.  ZZ )
133130, 131, 132syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( m  -  (
m  mod  N )
)  /  N )  e.  ZZ )
134 expmulz 12906 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  ( -u 1  ^c  ( 2  /  N ) )  =/=  0 )  /\  ( N  e.  ZZ  /\  ( ( m  -  ( m  mod  N ) )  /  N )  e.  ZZ ) )  -> 
( ( -u 1  ^c  ( 2  /  N ) ) ^ ( N  x.  ( ( m  -  ( m  mod  N ) )  /  N ) ) )  =  ( ( ( -u 1  ^c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) ) )
135116, 120, 128, 133, 134syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) ) )  =  ( ( ( -u 1  ^c  ( 2  /  N ) ) ^ N ) ^ (
( m  -  (
m  mod  N )
)  /  N ) ) )
136123nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  CC )
13768, 136subcld 10392 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  -  ( m  mod  N ) )  e.  CC )
138137, 72, 75divcan2d 10803 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) )  =  ( m  -  ( m  mod  N ) ) )
139138oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) ) )  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) ) )
140 root1id 24495 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ N
)  =  1 )
141122, 140syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ N
)  =  1 )
142141oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) )  =  ( 1 ^ ( ( m  -  ( m  mod  N ) )  /  N
) ) )
143 1exp 12889 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( m  -  (
m  mod  N )
)  /  N )  e.  ZZ  ->  (
1 ^ ( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
144133, 143syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
1 ^ ( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
145142, 144eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
146135, 139, 1453eqtr3d 2664 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) )  =  1 )
147127, 146eqtr3d 2658 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^c  ( 2  /  N ) ) ^ m )  / 
( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  1 )
148121, 124, 126, 147diveq1d 10809 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ m
)  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
) )
149110, 115, 1483eqtr3rd 2665 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
)  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) )
150105, 149oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
) )  =  ( ( exp `  (
( 1  /  N
)  x.  ( log `  ( A ^ N
) ) ) )  x.  ( exp `  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) ) ) ) )
15186, 102, 1503eqtr4d 2666 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) ) )
152 eflog 24323 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  A )
15343, 44, 152syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( exp `  ( log `  A
) )  =  A )
154153adantr 481 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( log `  A
) )  =  A )
155151, 154eqeq12d 2637 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) )  <-> 
( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
156 zmodfz 12692 . . . . . . . . . . 11  |-  ( ( m  e.  ZZ  /\  N  e.  NN )  ->  ( m  mod  N
)  e.  ( 0 ... ( N  - 
1 ) ) )
157109, 122, 156syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  ( 0 ... ( N  -  1 ) ) )
158 eqcom 2629 . . . . . . . . . . . . 13  |-  ( A  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  <->  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  =  A )
159 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( n  =  ( m  mod  N )  ->  ( ( -u 1  ^c  ( 2  /  N ) ) ^ n )  =  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )
160159oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  mod  N )  ->  ( (
( A ^ N
)  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) )  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
) ) )
161160eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( n  =  ( m  mod  N )  ->  ( (
( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) )  =  A  <-> 
( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
162158, 161syl5bb 272 . . . . . . . . . . . 12  |-  ( n  =  ( m  mod  N )  ->  ( A  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  <->  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
163162rspcev 3309 . . . . . . . . . . 11  |-  ( ( ( m  mod  N
)  e.  ( 0 ... ( N  - 
1 ) )  /\  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
164163ex 450 . . . . . . . . . 10  |-  ( ( m  mod  N )  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
165157, 164syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
166155, 165sylbid 230 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N
)  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
16777, 166syl5 34 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A
)  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
16876, 167sylbird 250 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
169168rexlimdva 3031 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  ->  E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) ) ) )
17059, 169mpd 15 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
171 oveq1 6657 . . . . . . 7  |-  ( ( A ^ N )  =  B  ->  (
( A ^ N
)  ^c  ( 1  /  N ) )  =  ( B  ^c  ( 1  /  N ) ) )
172171oveq1d 6665 . . . . . 6  |-  ( ( A ^ N )  =  B  ->  (
( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) )  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
173172eqeq2d 2632 . . . . 5  |-  ( ( A ^ N )  =  B  ->  ( A  =  ( (
( A ^ N
)  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) )  <->  A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ n ) ) ) )
174173rexbidv 3052 . . . 4  |-  ( ( A ^ N )  =  B  ->  ( E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
175170, 174syl5ibcom 235 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( ( A ^ N )  =  B  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
17642, 175pm2.61dane 2881 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  ->  E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) ) ) )
177 simp3 1063 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  B  e.  CC )
178 nnrecre 11057 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  N )  e.  RR )
1791783ad2ant2 1083 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
1  /  N )  e.  RR )
180179recnd 10068 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
1  /  N )  e.  CC )
181177, 180cxpcld 24454 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( B  ^c  ( 1  /  N ) )  e.  CC )
182181adantr 481 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( B  ^c  ( 1  /  N ) )  e.  CC )
183 elfznn0 12433 . . . . . . 7  |-  ( n  e.  ( 0 ... ( N  -  1 ) )  ->  n  e.  NN0 )
184 expcl 12878 . . . . . . 7  |-  ( ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  n  e. 
NN0 )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
)  e.  CC )
18515, 183, 184syl2an 494 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n )  e.  CC )
18610adantr 481 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  NN )
187186nnnn0d 11351 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  NN0 )
188182, 185, 187mulexpd 13023 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  ( ( ( B  ^c 
( 1  /  N
) ) ^ N
)  x.  ( ( ( -u 1  ^c  ( 2  /  N ) ) ^
n ) ^ N
) ) )
189177adantr 481 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  B  e.  CC )
190 cxproot 24436 . . . . . . 7  |-  ( ( B  e.  CC  /\  N  e.  NN )  ->  ( ( B  ^c  ( 1  /  N ) ) ^ N )  =  B )
191189, 186, 190syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( B  ^c  ( 1  /  N ) ) ^ N )  =  B )
192183adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  NN0 )
193192nn0cnd 11353 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  CC )
194186nncnd 11036 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  CC )
195193, 194mulcomd 10061 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( n  x.  N )  =  ( N  x.  n ) )
196195oveq2d 6666 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( n  x.  N ) )  =  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( N  x.  n ) ) )
19715adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
198197, 187, 192expmuld 13011 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( n  x.  N ) )  =  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ^ N ) )
199197, 192, 187expmuld 13011 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( N  x.  n ) )  =  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ N
) ^ n ) )
200196, 198, 1993eqtr3d 2664 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ^ N )  =  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ N
) ^ n ) )
201186, 140syl 17 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ N )  =  1 )
202201oveq1d 6665 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ N
) ^ n )  =  ( 1 ^ n ) )
203 elfzelz 12342 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( N  -  1 ) )  ->  n  e.  ZZ )
204203adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  ZZ )
205 1exp 12889 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
206204, 205syl 17 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( 1 ^ n )  =  1 )
207200, 202, 2063eqtrd 2660 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ^ N )  =  1 )
208191, 207oveq12d 6668 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^c  ( 1  /  N ) ) ^ N )  x.  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ^ N ) )  =  ( B  x.  1 ) )
209189mulid1d 10057 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( B  x.  1 )  =  B )
210188, 208, 2093eqtrd 2660 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  B )
211 oveq1 6657 . . . . 5  |-  ( A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  ( ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ n ) ) ^ N ) )
212211eqeq1d 2624 . . . 4  |-  ( A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  ->  ( ( A ^ N )  =  B  <->  ( ( ( B  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  B ) )
213210, 212syl5ibrcom 237 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  B ) )
214213rexlimdva 3031 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  B ) )
215176, 214impbid 202 1  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    mod cmo 12668   ^cexp 12860   expce 14792   picpi 14797   logclog 24301    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  1cubr  24569
  Copyright terms: Public domain W3C validator